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Summary.—An improved method of calculating the performance of an
airscrew has been described in previous reports (Refs. 1 and 2), which includes
anallowance for tiploss. The present report contains tables of a parameter ()
required in the calculation of the blade interference by the new method ;
these tables being available, the labour involved is no greater than in a
calculation by the standard vortex theory. A simplified method of calculation
involving the use of charts is described in a separate report (Ref. 6).

The tables given here cover the case of two-, three-, and four-bladed air-
screws at a series of standard radii and for all values of pitch. Details of the
method of calculation (due to Goldstein, Ref. 3) are given in an Appendix
together with a method of interpolation which can be used to extend the
results to any other number of blades. The results for three blades were
interpolated by this method but are probably quite accurate enough for
practical purposes. All formulae required in the present method of strip
theory calculation are given here, together with complete details of a specimen
caleulation.

A preliminary comparison is included between results of calculations by
the present method and the new experiments on high pitch model airscrews
described in Ref, 5, for two-bladed airscrews of pitch ratio 1.5 and 2.5 and
a four-bladed airscrew of 2.5 ; these show satisfactory agreement (below the
stall) and reasons are given to suggest that the agreement should be at
least as good over the whole range of pitch ratio.

It is concluded that the present formulae and tables may be used with
confidence to calculate the performance of any airscrew below the stalling
angle, provided that suitable aerofoil data are available.
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List of Symbols

V  Forward velocity of airscrew ; feet per second.
Q  Angular velocity of airscrew ; radians per second.
W, Resultant of V and r () (Fig. 1).
w, Total interference velocity (Fig. 1).
W  Total velocity relative to blade element ; resultant of W, and w,
igl)
Ctr(fulahon round a blade element.
&  Inclination of W to plane of rotation (Fig. 1).
a Incidence of blade section (Fig. 1).
6 Blade angle (Fig. 1).
¢ Chord of blade section.
r Radius of section.
R  Tip radius.
N  Number of blades.
P, “ Induced ' power loss.
P, Profile drag power loss.
»x - Coefficient of interference velocity §2, equation 2.
s (Solidity) = Ne¢/2ar.
u = cot .
ko = uR/r.
Coefficients.—x, A, W, wo, To’, Peoy’, Pey’, To, Py, Pog, Qc are defined in §3,

equations (13-19).

1. Introduction—In R. & M. 1377 and R. & M. 15212 a new
method of calculating the performance of an airscrew is described
which represents an improvement on the standard vortex theory
in so far as the latter assumes that the number of blades is infinite
while the new method makes an allowance for tip loss which varies
with the number of blades. The new method is based on calculations
by Goldstein® of the velocity field of rigid helicoidal surfaces moving

through a perfect fluid. Goldstein’s original numerical calculations
were limited to two-bladed airscrews of pitch ratio less than 1.5
and to a single four blader. The calculations have now been ex-
tended to the case of four-bladed airscrews and to higher pitch
values ; they are given in the present report in a form convenient
for application to the airscrew problem. By special methods of
interpolation the results may be applied to any radius or number of
blades for any value of pitch.

The actual strip theory formulae of R. & M. 1377* have been
simplified by omitting the profile drag coefficient from the formulae
for the interference velocity. This omission has been shown to have
a negligible effect on the calculated performance of the airscrew
below the stalling angle. It is then possible to express the formulae
in a form which does not refer explicitly to coefficients of axial and
rotational “ interference " wvelocity, but deals with a coefficient
w, of total “ interference " velocity w, and a coefficient W, of the
total velocity W, relative to a blade element (Fig. 1). The formulae
in this form are given in Ref. 2, §7.1, and are repeated here for
convenience,
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Strictly speaking these formulae are only theoretically correct
for a particular distribution of interference velocity with radius
(Ref. 1, §6, Ref. 2, §1.24) ; their use in the general case is justified
by their good agreement with the results of theoretically more
accurate but more laborious methods described in Ref, 2.

A complete specimen calculation by these formulae is included.
A simplified method in which strip theory calculations are made at a
single radius (0:7) only, and the thrust and torque coefficients
obtained by the use of suitable integrating factors, is described in
another report, Ref. 6.

2. Defimition of (x)—The fundamental relation of the vortex
theory, which is based on the assumption of an infinite number of
blades?, may be expressed as a relation between the total interference
velocity w, (Fig. 1) and the circulation I round the blade element
at the corresponding radius, in the form

w, = NI'[4nr sin @, " "y .3 el I

where N is the number of blades, # the radius, and ¢ the angle of
pitch of the resultant relative velocity W (Ref. 2, §1.22 (1)). In the
improved theory described in Ref. 1, §6 and Ref. 2, §§1.24 and 7.1,
this relation is replaced by the formula

wy, = NI'[4ar = sin ¢, ¥ % - = (2)

which differs from (1) only by the presence of the factor » in the
denominator. This factor is assumed be to a function of the
following three variables only :—number of blades N, pitch angle ¢
and radius x(= 7/R). Thus the assumption of “ independence of
neighbouring elements ”’ is retained, since the value of x at any
radius does not depend on the conditions over the rest of the blade.
At the same time an allowance for tip loss is included, since x is a
function of the number of blades, and tends to zero at the blade tip
so that the circulation I" must tend to zero there. This is true even
if the blade has a square tip, since w; must still remain finite.

The methods of computing the function » are discussed in
Appendices I and IT. Tables of values of  for two-, three- and four-
bladed airscrews* are given in Table 1 for the following standard
values of radius :—0-3, 0-45, 0-6, 0-7, 0-75, 0-8, 0-85, 0-9, 0-95,
and corresponding curves plotted against sin ¢ are shown in Figs. 3,
4 and 5.1 Methods of interpolating to other radii and numbers of
blades are given in Appendix I. Table 3 and Fig. 6 give values of x,
at a radius of 0-7 only, for two, three, four, six and eight blades
interpolated by the method described in Appendix I.

* The values of % for four-bladed airscrews for sin ¢ = 1 are derived from
an exact formula obtained by Mr. F. L. Westwater as yet unpublished. The
values for three-bladed airscrews were interpolated by the method of
Appendix I.

t In Ref. 1, Fig. 5, K (= x/cos? §) is plotted against tan ¢ for two-bladed
airscrews only and for a limited range of pitch values.
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3. Detailed Strip Theory Formulae—From formula §2 (2) for the
total interference velocity together with the fact that the direction
of the total snterference velocity w, is normal to that of the resultant
relative velocity W (Fig. 1), it is a simple matter to write down all
the formulae required in a strip theory calculation of airscrew
performance, by reference to the geometry of Figs. 1 and 2, and
by making use of the Kutta-Joukowski relation between lift and
circulation (equation 4 below).

Taking the incidence a of the blade element at radius r as
independent variable, the first formula is

§ APy, Semmsmaluint ST 0 Yo aoiledipll £ o)

where 0 is the blade angle (Fig. 1). Formulae involving the inter-
ference velocity may be derived from formula §2 (2) together with
the relations

W =rQsec ¢ —w, tan ¢ 3! L7 . 9
V =7rQtan ¢ — w, sec ¢ o 3 L. mi(8)

which are derivable from the geometry of Fig. 1. From the Kutta-
Joukowski relation,

dL

EZQWP ol s . A b ” (4
together with the definition of &

dL

-d-;_ﬁch’k,_ 2 e s e < (5)
we have

I'=cWh .. s he ’e 2 (6)
and so equation §2 (2) becomes

wy = §sky W/x sin ¢ s 47 s vé s U6

where s (coefficient of solidity at radius #) is written in place of
Ne¢/2nr. - Eliminating W between equations (2) and (7) gives

w2 [ (14 AR L @

% sin ¢ cos ¢ # COS @

then by substituting w, in (2) and (3) it is possible to determine W
and V. The elements of thrust and torque are given at once by the
geometrical equations (Fig. 2)

%mchW‘(kLmscb—-kpsind)*) P

%: oNerW? (kpcos § + & sin ).

* This term is generally negligible below the stalling angle.
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In practice it has proved convenient to ignore the second equation
and to work with power relations derived from the relation :—

Torque power = thrust power + (total)* induced loss

-+ profile drag loss . . .
or
n‘%}— "'T+"IP‘*—S~“P8 .. (10)
where
4Py . w, sec q; (induced power loss)
dr 2 dr
and (11)

? = oNcW?3&, (profile drag power loss).

Then the thrust, torque and efficiency are given by the relations
ik J T |

P, 4+ P,— (JP 14 r’) ar

e 5 Lo s aeiie)
QQ=VT+P,+P,
i -5
S e )

In numerical calculations it is convenient to work with non-
dimensional coefficients defined as follows :—

X =it

fo Ne

T 2nr

A = V/RQ g )
W, = W/RQ i M S . Sl -
w, = w, sec $/RQt =5 &d is s [(15)

: | SIS (v 1 ¥

¢ = JRIP  Zm dr gt

e, Py
Pl =oripp “Euo et ' pesty oy oon )

* It is no longer necessary to separate the induced power loss into axial
and rotational components of power loss as isdone £.£. in Ref. 8.

t The factor sec ¢ is included in order to simplify equations (22) and (25)
below.
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P, — 1 1  dP,
oR® 2w @ .
e semi
¢ mpR? (RQ)?
_ _Pay
Fean = R ®OP [
__Qu
Q= apR? (RQ)®
Then equations (1), (8), (3), (2), (9), (12) are replaced by
¢=0—a

_ dsxky / ( §sk,_ )
xsm¢cos*d; xcos¢
A= xtan ¢ — w,
W, = xsec ¢ — w, sin ¢
T = sW,2 (k, cos & — kp sin f)
Py = w. T’
Pey' = sW:kp

T I: T, d(?)

Py + Pa = ‘ (Poy’ + Puy)) dia®)

Qc - ATc = Pc[ = Pcz
Pcl + PCS -

l—g= 0.

(18)

(19)

(20)
(21)

(22)
(23)
(24)
(25)
(26)

@7)
@8)

(29)
(30)

The standard type of coefficients &y, kg, J are given in terms of the

coefficients defined in (19) by the relations

| gy
By =2 ’%’ T. = 7.7516 T,
3
ke (1.9 = % P, (1.9 = 3:8758 P, (,, ,, (Definition)
kq = (JAy[2n) + kpy -+ kpy
kpy + kp
WP | 2, A
pifyes =

31)
(32

(33)

(34)
(35)

* This symbol has been used in a different sense in some published reports.

t The term 2p sin § may be neglected below the stalling angle.
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4. Specimen Calculation.—Part of a specimen calculation by the
above formulae is given in Table 4, which refers to a two-bladed
airscrew of pitch ratio 1.5. Values of ¢, w., A, W, T, P,’, P.,’, are
calculated by means of equations (20-26) for a series of values of the
incidence a ranging here from zero lift to the stall, and for a series
of standard radii taken here as :—x = 0-3, 0-45, 0-6, 0-75.* 0-9
and 0-962. Values of 6 and s are known from the design of the
screw ; x is given as a function of x and sin ¢ by Fig. 3 (two-bladed
alrscrew) k¢ and kg, are supposed to be known functions of « for
each radius; in the present case they are taken from Table 3 on
p- 15of R. & M. 8924 (higher wind speed).

The next step in the calculation is to plot T., P,,’, P.y’ against
A for each radius (Figs. 7, 8 and 9) and to read off values corres-
ponding to a series of smooth values of A (Table 5). These values
are then to be plotted against x* (Figs. 10, 11 and 12) and integrated
graphically according to equations 27 and 28t The efficiency #
and the torque (or power) coefficients are then given by equations
(29) and (30) or (34) and (35) (Table 6).

The type of thrust and power grading coefficient as defined by
equations (16), (17) and (18) is such that, e.g., the thrust coefficient
T, is equal to the area under a curve of T, plotted against radius
squared (x?) (Fig. 10). On the conception of the airscrew as an
actuator disc, the ordinate of this curve is proportional to the pressure
at a given radius. This has been found more convenient than the
more usual type of thrust grading curve, because it is more sym-
metrical and does not fall so steeply towards the tip, while at the
same fime it emphasises the greater relative importance of the
sections nearer the tip.

A simplified method in which calculations are made at a single
radius (0-7R) only is described in Ref. 6, together with a graphical
method in which the whole of the calculations are replaced by
operations with families of curves.

5. Comparison with Experiment—Complete strip theory calcula-
tions as described in the last section have so far been made for
three of the model airscrews of the family recently tested (Ref. 5)
viz., the two-bladed airscrews of P/D 1-5 and 2-5 and the four-
bladed airscrew of P/D 2-5, for the range below the stall The
results are plotted in Figs. 13, 14 and 15, and show good agreement
with experiment for the screw of P/D 1-5 though the agreement is
not quite so good for the two screws of P/D 2-5. From results of
the calculations in Ref. 4, based on the assumption of infinity
blades (x = 1) and of calculations by the approximate method

* Details are given for ¥ = 0-75 only.
1 The lower limit of integration corresponds to the surface of the airscrew
spinner.
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described in Ref, 6 there is little doubt that the agreement will be
at least as good (below the stall) for airscrews of lower pitch, and
over the whole range of pitch tested in Ref. § (P/D 0-:3 to 2-5).
The appreciable discrepancy which may be observed in Ref. 4,
Fig. 12, between theoretical and experimental values of the torque
coefficient* for the two-blader of P/D 1-5 (repeated in Fig. 14) has
disappeared : —(a) for large %q, as a result of the correction for tip
loss included in the method of the present report; (b) near zero
thrust, as a result of the increase of the observed kq between the old
experiments of Ref. 7 and the new (Ref. 5, Fig. 5). This increase
of observed kg may be partly attributed to an increase of Reynolds
number to a value agreeing closely with that of the aerofoil tests
used as a basis for the strip theory calculations (Ref. 4, Table 3, p. 15).

6. Conclusions.—The present method of airscrew strip theory
calculation gives good agreement with experiment below the stall
up to high values of pitch ratio and is superior in this respect as well
as on theoretical grounds to the older ““ vortex theory ” which made
no allowance for tip loss. The present method is at least as simple
in application as the old, and the formulae as here set out appear to
reduce the labour of computation to a minimum. The use of
coefficients of power loss in computing torque and efficiency shows
the relative importance of the two sources of power wastage at
various working conditions.

A considerable further simplification in detailed strip theory will
be attained by the use of the charts described in Ref. 6, §2, when
they are available.

* The corresponding comparison for the thrust is of little value on account
of the uncertainty of the boss correction on the results of Ref. 7.




APPENDIX 1
Methods of Inmderpolation—The process of calculating » as a
function of ¢, x and N described by Goldstein in Ref. 3 is laborious,
and the infinite series tend to converge less rapidly on approach-
ing the airscrew tip and for large values of the pitch angle ¢.
In order to overcome this difficulty use has been made of the
approximate formula due to Prandtl, Ref. 3, §3.4, as a formula of
interpolation. Values of x calculated by this formula will be denoted

by the symbol %p. The formula for sp is

-

#p = z arc cos e gL
where
= (1 — x)/sin ¢,
tan ¢, = x tan ¢.
This equation is solved in practice by writing
xp = (6°/90°)

and

with
Lcos 6 = 10 — $mNf

where m = 0+4343 is the modulus of common logarithms. For small
values of sin d; and values of x near 1:0 it is convenient to use the

approximation
J= (1 —x)/xsin §.

This implies that the curves (in e.g. Fig. 3) cut the lines of constant »
at values of sin ¢ which are approximately proportional to (1 — x)/x
(since x is approximately equal to »p in this region).

There is good reason to believe that the ratio x/xp tends to a
finite limit at the airscrew tip at which both x and xp separatel
tend to zero. Both x and x, tend to definite limiting values as
tends to 90° (infinite pitch) and for the two- and four-bladed airscrews
simple formulae for the limiting value of » are available (see Appendix
III). The limiting value of x/xp at the airscrew tip for sin ¢ = 1
is 05 for the two-blader, which is presumably the smallest value that
can occur ; while both » and #p tend to unity as N tends to infinity.
It is true that, as appears from Figs. 3, 4 and 5, both » and »/x%p
become greater than unity for high values of pitch and small values
of radius, but in practice strip theory calculations are never carried
to a radius smaller than 0-3 and it appears from Figs. 3, 4 and 5 that
the value of = at this radius only becomes slightly greater than unity
for high values of pitch. It is evident therefore that the ratio x/xp is
a suitable function to use in interpolating or extrapolating the limited
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number of values of % calculated by the exact formulae. Values of
the ratio #/xp are accordingly tabulated in Table 2 over the same
range as the values of % in Table 1 and may be used, in conjunction
with the explicit formula for »p above, to interpolate the values of x
to intermediate values of radius, sin ¢, or number of blades, and to
extrapolate to radii greater than 0-95 if required.

The largest values of sin ¢ for which it was possible to calculate
values of x directly, correspond to :—tan ttl x/1-5, for the two-
bladers, and tan ¢ = x/1-4 for the four-bladers (sec Appendix II
and Table 7). Values between these limits and sin ¢ = 1-0, are
interpolated by the above method. It is also possible to interpolate
values of x»/xp for other numbers of blades by plotting against
1/N, assuming that x/xp tends to unity as 1/N tends to zero. The
values of % and x/xp for three blades given in Tables 1 and 2 and
Fig. 4 were obtained by this method. Table 3 (for x = 0-7) also
includes results for six and eight blades obtained by the same method.
These values are of course less accurate than those for two and four
blades but are probably quite good enough for practical purposes.

APPENDIX II
Details of calculations of x made by Goldstein’s formulae
additional to those given in his original report®,

Four-bladed Airscrews.—The relevant formulae are :—Ref. 3,
§3.4 (2), §4.1 (9) and §4.2.

() x=cew -2 2 (5= »)

« Lim o o [(4m + 2]
Liw + 2 [(dm + 2)u,)

where
p=-cotd, p=plx
u 8 § Foon+1(®
Go W) = ]—i—p T A m=0 @mF1)F

F,, () is tabulated in Ref. 3, Table 3 (it is there described as
Fu, () ; Fy s(u) and later terms are negligible.
The A, have the values
1-3

A, =1 3A, =1} B5A,= " et
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The values of g, and &, as functions of u_ were obtained from curves
drawn through the values calculated by Goldstein for the two-bladed
airscrews (Ref. 3, p. 449) on the assumption that

¢ (four-bladers) u, = & (two-bladers) ju,.
It was first necessary to calculate or obtain values of I, (2u) and
I (6u) over the range u = 0 to u = 10.
Methods wused for Calculating 1, (2u) and 14 (6p).
I, (2u).—From p = 0 to p = 2-5, given in Watson,* p. 736.
From p =2-5to u = 8-0: by the formula

I, (24) = I, (24) —ﬁl; (2u),

I, (2u) and I, (2u) being given in Watson,* p. 713.
From g = 8-0 to u = 10-0; by the formula
[ Al pal) eang 150 0EE - wiF 15.7.9
LG &, T e T Sl }

I (Bu). From pu=0topu = 1-0; given in Gray and Matthews
(Bessel functions). From u = 10 to g = 2-67 by the formula
Y 4 1
L6 = {14 5(1+50) L6

o %{1 + (14 ) 1T 6.

From p = 2-67 to 10-0 by the formula

o i 143 143 135
: ‘-""—mr{‘“an@'m
_ 143 135 119

143 L 143 185 119 95}_

8 16x 24xr ' 8x 16x 24x 32«
The necessity of obtaining I,, (10u), etc., was obviated by the use
of'the following approximate formulae, Write
Sq = g Uy
o

where

L Teialimt2) p
o= Ay Gm+2)

It is required to evaluate S, . The approximation used is

%, =9,

* A treatise on Bessel Functions by G. N. Watson.
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where
7, = (cos O/cos 6,) X ¥m+2 A
and tan 6 = u

X =exp. (y — ¥,
y = tan 6 + tan g—g)-l-logtanio.
This formula is due to Nicholson.* Then

S,

f
o418

v, = (cos OJcos B,) arc sin (X3).

We neglect the difference between #, and v, from the third term
onwards and write

Suo =(u1+“ﬁ)_(v1+”l) +SI‘
Two-bladed Airscrews.—Goldstein’s original calculations refer to
o = 2+0, 3-0, etc. up to 10-0. Additional calculations were made
for u, = 1-5 and 2-5 and the original calculations were repeated for
Mo = 2-0 and 3-0 and carried nearer to u/u, = 1-0 by the use of
Nicholson’s formulae as in the case of the four blader.

All results for two and four bladers were afterwards smoothed,
interpolated and extrapolated by the method described in Appendix
I. In plotting x/xp against g, it was verified that irregularities in the
original points were sufficiently accounted for by the neglect of the
terms &, etc., and the curves were accordingly smoothed on the
assumption that x/xp tends to a finite limit at the tip (u = u,).
Values of z directly calculated by the above formulae are given
in Table 7.

APPENDIX IIT
Rotating Plane Lamina in Two Dimensions.—The solution of this
problem is given in Lamb's Hydrodynamics §72.4°. With the
notation there used, put

z = ¢ cosh . os .o e o (1)
Then on the surface of the lamina,
§=0, y=0, x=ccosn. .. 3o (2)
Put
P+ i¥Y=w=cie¥ .. oo .e S

* Phil. Mag. Vol. 20, p. 938 (1910).
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and express the condition that
¥ = lor® + const. o «s
on the surface (Lamb, §72, equation 1). Then, on the surface,
® + ¥ = Ci (cos 25 — i sin 27)

r=2x
so that

— $or® = C cos 29 — }wc® (1 + cos 27)
and equation (4) is satisfied if

1
¢ _ch,'

. dw
U — P =—

dz

_2ie%
~ ¢sinh £
so that on the surface
T $oc? (cos 2y — i sin 2y)

“— :
¢sin 7
v = @C Cos 7
= X -
and
» 4 wc cos 2y
sin 7
The discontinuity of % across the surface is given by
A“_mcf:os2q
sin 7
and
¢=iwc’sin2r}
1

A¢=§wc'sin2n.

In the application to the airscrew problem put
CPE= TR o

W1.=!.-U=10”’, 4)‘:’.!,

2 2 2

I'* = A® = {wR?sin 27,

4)

)

)

(7)

®)

®)

(10)

(11)

* These symbols refer to the airscrew.



14

with
Rcosp=r.
Then eliminating o we get
i s w,R* sin 29
Comparing with §2 (2)
il NT
Y 4mrxsin §
we have
® = -l—tan 7
4
with
Rcecosnp=r.

For the same case of ¢ = x/2, the value of »p is
xp = %arc cos e~1-%),

As x— 1, x—> 0 and %p—> 0, and it may be shown that x/xp tends
to the finite limit 05,

A solution of the corresponding problem for four blades, viz., the
rotating cruciform lamina in two dimensions, has been recently
obtained by Mr. F. L. Westwater, but is as yet unpublished. His
results have been used by permission as a basis of Tables 1 and 2
(four blades) and Fig. 5 near sin ¢ = 1-0.

APPENDIX IV

A Method of Estimating the Relative Importance of the Interference
Correction by the Goldstesn and Vortex Theory Formulae—If we
confine our attention to a single section at radius 0-7R as representing
a suitable average for the whole airscrew (see Ref. 6) it is possible
to obtain a simple formula for the relative importance of the inter-
ference velocity. Refer to Fig. 1, but assume that all incidences and
blade angles are referred to the zero lift line of the section instead
of the chord ; write a, (the uncorrected incidence) for the angle
which W, makes with the zero lift line of the section. Then assuming
w, to be small

(a0 — a) = wy[W.
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The relative importance of the interference correction may be defined
as the ratio

G—a__ w
a  aW '’
Now the fundamental interference formula (§3, equation 7) is

wy sk
W xsing

so that for a lift curve of standard slope for which

kL=aoa=ga
k11

we have
ﬂo—*ﬂ_ wl o ‘}mn

a aW xsind;

so that this quantity is a function of :—solidity s, ¢ and number of
blades, or of :—¢, blade width and number of blades only.

Values of the ratio (@, — a)/a for a blade width ¢/R = 0-155 at
radius 07, equal to that of a standard blade of the family, are
plotted against sin ¢ for two and four bladers in Fig. 16. Values of
a for two and four blades are distinguished by the suffixes 2 and 4
respectively.

Writing ax* for the corresponding value calculated with z = 1

(same solidity, infinity blades), Fig. 16 also shows values of 22 : -
2
and of the difference X2 a_ %2 . A scale of approximate V/uD is
2
indicated along the scale of sin ¢, being calculated by the formula :—
J = @x tan ¢.

The maximum difference between finite and infinite number of
blades occurs for large pitch values for the two blader and amounts
to 19 per cent. For J = 2-5 it is 16 per cent. and has fallen to
S per cent. for J = 0-7 and to 2 per cent. for J] = 0-5, so that even
for moderate pitch two bladers the error of the assumption of
infinity blades is by no means negligible. For the four blader of the
same blade width (double solidity) the difference is 10 per cent. at
a P/D 2-5 and would have half this value for a screw of the same
solidity as the two blader.

* Actually the values of a, are different for the two- and four-bladed
screws since the latter are of double the solidity.
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TABLE 1
Values of = for two-bladed airscrews
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Values of » for three-bladed airscrews*®
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TABLE l—continued
Values of x for four-bladed airscrews
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#/xp ; hwo-bladed airscrews
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TABLE 2——continued
¥[%p i three-bladed airscrews*

x| 03 |[0-45| 06 | 0-7 | 075 | 0-8 | 0:85 | 0-9 | 0-95 | 1:0

sin ¢

0-05 1-000| 1-000] 1-000{ 1-000| 1-000| 0-999, 0-998] 0-997| 0-997| 0-995
0-1 | 1-000f 0-999) 0-999| 0-999! 0-998| 0-995| 0-993| 0-992| 0-989| 0-987
0-2 | 0-997| 0-995( 0-993| 0-990| 0-988| 0-982| 0-979| 0-972| 0-968( 0-960
0:3 | 0-992 0-989 0:980| 0-968| 0-964| 0-955 0:944| 0-931| 0-921| 0-910
0-4 | 0-984| 0-975 0-959 0-938| 0-926| 0-910| 0-895| 0-876| 0-860| 0+844
0:5 | 0:976 0-963| 0-931| 0-900| 0-883| 0-861| 0-840| 0-815| 0-794| 0-774
0:6 | 0-978| 0-955| 0-906| 0-865| 0-841| 0-816| 0:791| 0-765| 0-745| 0:724
0-7 | 0-999| 0-960 0-891| 0-835| 0-808| 0-779 0-750( 0-725| 0-702 0-680
0:8 | 1-:051} 0-975| 0-882| 0-815| 0-784| 0-750 0-719| 0-689| 0-665 0-645
0:9 | 1-163| 1-030| 0-897| 0-814| 0-770| 0-730( 0-694| 0-663| 0-637| 0-610
1-0 | 1-535| 1-170| 0-935| 0-817| 0-760| 0-714| 0.675| 0-642 0-611| 0-583

* Interpolated.

xfy ; four-bladed aiyscrews

s

g

h

~ooccocooes
SOOI GH T W=D

0-3 | 0-45| 0:6 | 0:7 |0-75| 0-8 | 0:85 | 0-9 | 0-95| 1-0

1:000{ 1-000| 1-000] 1-000{ 1-000| 1-000| 0-999 0-998] 0-998| 0-997
1-000{ 1-000| 1-000| 1-000] 1-000| 0-997| 0-997| 0-995| 0-993| 0-992
0:998| 0-997| 0-996| 0-995| 0-995| 0-991| 0:988| 0-983| 0-980| 0-975
0-996| 0-994) 0-992 0-984| 0-980| 0-973] 0-964| 0-956| 0-948| 0-937
0-991) 0-986| 0-977| 0-962) 0-952| 0-940| 0-928| 0-912| 0-899| 0-878
0-985| 0-979| 0-958| 0-933| 0-918| 0-901} 0-883| 0-863| 0-845| 0-819
0-987| 0-975| 0-940| 0-905 0-886| 0-864| 0:842{ 0-820| 0-799| 0-777
1-004| 0-980| 0-926| 0-880| 0-858| 0-833| 0:807| 0-783] 0-760| 0-737
1-049| 0-999| 0-921| 0-862| 0-836| 0-806] 0:777| 0-748] 0-724| 0-701
1-155| 1-050| 0-929| 0-855| 0-821| 0-786] 0-752| 0-720| 0-693| 0-667
1-493| 1-176| 0-965| 0-862 0-816] 0-773| 0-735| 0-699] 0-666| 0-637




TABLE 3
Table for x = 0+7

Values of x Values of #/xp
N 2 3 4 6 8 N 2 3 4 6 8

sind sind .

01 0-988 0-998 1:000 1:000 1:000 01 0996 0997 1-000 1-000 1-000

0-2 0-901 0-964 0-989 0997 0-998 0-2 0-972 0-990 0-995 0-998 0-998

0-3 0:774 0-892 0-945 0-986 0-994 0-3 0-921 0-968 0-984 0-993 0-996

0-4 0-663 0-809 0883 0-951 0-975 0-4 0-864 0:938 0-963 0+980 0+986

0:5 0564 0-725 0-812 0-904 0-947 0-5 0-801 0-900 0-933 0-960 0:972

0-8 0492 0-650 0:745 0-853 0-909 0-6 0-758 0865 0-905 0-940 0-955

0.7 0-441 0-586 0-682 0-800 0-873 0-7 0-736 0-835 (-880 0-921 0-945

0-8 0-398 0-533 0-627 0:753 0:829 0-8 0:718 0-815 0-862 0-909 0-932
049 0+360 0-494 0-581 0-708 0-790 0:9 0-704 0:814 0-855 0-905 0:929

1-0 0-325 0-457 0-543 0-670 0:754 1-0 0-692 0-817 0-862 0-914 0+937




TABLE 4

Details of Strip Theory Calewlation for a two-bladed aivscrew of P/D 1+5
Section EE, ¥ == 0:75, 6° = 32° 30", s = 0-0613

@ -8 - -2 0 4 8 14
b 38° 30° | 36° 80’ | 84° 30° | 32° 30’ | 28° 30' | 24° 30 18° 30’
sin & 0-6225 05948 0+5664 0-5373 0-4772 0-4147 0-3173
ky, —0-094 0021 0+187 0228 0430 0615 0638
® 0-422 0-438 0-458 0+480 0-527 0582 0688
§sxky/x sin ¢ cos® § —0-0134 0-0027 0-0179 0-0286 0-0509 0:0707 0-0747
1 - (§sky/x cos &) 0-991 1:002 1:011 1:017 1-028 1:036 1-030
wy —0:0135 00027 0:0177 0-0281 00495 00684 00725
xtan ¢ 05966 05550 0:5155 04778 0-4072 0-3418 0
A 0-6101 05523 04978 0+4497 0-3577 0-2734 :
¥ sec 09585 09330 09097 08895 0-8535 0-8242
W, sin —0-0084 0+0016 0-0100 0-0151 0-0236 0-0284
o 09669 0-9314 0-8997 08744 0-8300 07958
Te’ —0-0042 00009 0+0056 0+0090 0-0160 0-0217
P’ = wTs’ 0-00006 [  0-00000 |  0-00010 | 0-:00025 | 0:00079 | 0-00149
kp 0-0346 0-0192 0-0099 00069 0-0061 0:0077
* Pag 0-00192 [ 0:00095 | 0-00044 | 0- 0-00021 |  0-00024

12




TABLE §

Values of Tey's Poy's Poy’, obtained from curves of Figs. 7, 8 and 9 for two-bladed
aivscrew of P/D 1-5.

‘ s ‘ Toyf Py’ Pey’

0-2 — — —
0-25 0-0049 0-00010 0-00121
BB 0-3 0-0039 0-00004 0-00118
0-35 0-0062 0-00017 0-00080
% =03 0-4 0-0083 0-00036 0-00037
0-45 0-0087 0-00041 0-00025
¥ = 0-09 0-5 0-0067 0-00021 0-00033
0-55 0-0035 0-00006 0-00047
0-6 0-0007 0 0-00077
0-2 0-0187 0-00122 0-00054
0-25 0-0208 0-00135 0-00037
CC 0-3 0:0191 _0:00117 0-00026
0-35 0-0163 0-00086 0-00022
& =0+45 0-4 0-0134 0-00058 0-00025
0-45 0-0102 0-00035 0-00032
2% = 0-2025 0-5 0-0070 0-00016 0-00051
0-55 0-0035 0-00004 0-00095
0-6 0-0003 0 0-00175
0-2 0-0252 0-00191 0-00061
0-25 0-0242 0-00171 0-00035
DD 0-3 0:-0214 0-00135 0-00022
0-35 0:-0181 000096 0-00022
x =06 0-4 0-0146 0-00061 0-00024
0-45 0-0108 0-00034 0-00030
2® = (-36 0-5 0-0066 0-00013 0-00046
0-55 00021 0-00001 0-00099
0-6 —0-0037 0-00004 0-00195




TABLE 5——continued

Values of Tey', Pey’, Pey', obtained from curves of Figs. 7, 8 and 9 for two-bladed
airscrew of P/D 1-5.

A Tos' Py’ Poy'

0-2 0-0224 0-00164 0-00093

0-25 0-0225 0-00159 0-00035

EE 0-3 0-0199 0-00126 0-00020
0-35 0-0165 0-00085 0-00021

x =075 0-4 00128 0-00050 0-00024
0-45 0-0090 0:00025 0-00028

x* = 0-5625 0:5 00055 0+00009 0-00045
0-55 0:0011 0 0-00092

0:6 —0-0034 0+00002 0-00172

0-2 0-0170 0-00127 0-00081

0-25 0-0169 0-00126 0-00035

FF 0-3 0-0146 0-:00098 0-00022
0-35 0-0117 0-00061 0-00019

=09 0-4 0-0088 0-00035 0-00021
0-45 00059 0:00015 0-00028

2t = 0-81 0-5 0-0029 0-00003 0-00036
0-55 =0+ 0009 0 0-00079

0-6 —0-0050 0-00012 0-00132

|

0-2 0-0120 0-00119 000072

0-25 0-0111 0-00106 0-00030

FFa 0-3 0:0099 0-00072 0-00018
0-35 0-0082 0-00047 0-00015

& = 0-962 04 0-0059 0+00026 0-00015
045 0:0037 0-:00010 0+00019

= 0-925 0-5 0-0018 0-00001 0-00028
0-55 —0-0012 0-00002 000056

0-6 —0-0046 0-00014 0-00098




TABLE 6

Values of To, Poy, Pey, obtained by graphical integration of curves in Figs. 10, 11, 12 ; also deduced values of ], kr, kq, n, for two-bladed
airscrew of P/D 15,

A I Ty AT, Poy Pog Qe hex kq 1
0-2 0-6282 0-0175 0-00350 0-00132 0+00071 000553 0-135 0-0215 63:3
0-25 0-785 0-0175 000438 0-00128 000037 0-00604 - 0-136 0:0234 72+6
0-3 0:942 0-0155 0'0’0464. 000098 0-00025 0-00578 0-120 0-0224 80-2
0-35 1:098 0-0129 0-00453 0+00067 0-00021 0-00541 0-100 0:0210 83-8
0-4 1:257 0-0103 0-00410 0-00042 0-00021 0-00473 0:079 0:-0184 86-7
0-45 1-414 0-0075 0-00337 000023 0-00024 0+00385 0-058 0:0149 876
0+5 1:571 0:0045 0-00226 000008 0-00037 0-00272 0-035 0:0105 83:2
0+55 1-728 0:0010 0-00056 0-00001 0-00076 0-00133 0-008 0:0052 42-1
0+6 1-885 —0-0027 0-00165 0+00004 0-00140 |—0-00021 —{0-021 —0-:0008




(e1823)

TABLE 7
Values of x cos® ) actually calculated by Goldstein's formulae ((Ref. 3) and Appendix I11). Two blades.

(cot d)/x = 1:5 (cot )/ = 2:0 (cot ¢)/x = 2+5 (cot §)/x = 3-0 (cot d)/x = 4+0 (cot ¢)/x = 5-0
cotp | mcostd | cotd | mcostd | cotd | mcostd | cotdp | mcos*d | cotd | mcostd | cotd x cos® ¢
1-4 0-129 1-9 0:153 2-4 0-177 2:8 0-280 3-8 0-319 4:8 0-400
1-3 0-182 1-8 0-222 2:2 0-312 2:5 0-424
1-2 0210 13 0267 2-0 0-382
1-0 0-235 1:6 0-297 1-8 0-423
0-8 0-226 1-4 0-332 1:6 0-441
0-6 0+186 1:-2 0:341 1+4 0-442
0-4 0 144 10 0-329 1:2 0-426
0-2 0:076 08 0-204 1:0 0-394
06 0-243 0-8 0-344
0-4 0:175 0-6 0-280
0-2 0+091 0-4 0-198
0-2 0-103




Values of x cos® ¢ actually calculated by Goldstein's formulae ((Ref. 8) and Appendix 11). Four blades.

TABLE 7—continued

(cot d)/x = 1+4 (cot )/x = 2-0 (cot &)/x = 30 (cot §)/x = 40 (cot §)/x = 5:0
cot ¢ % cos® cot ¢ % cos* & cot § # cos® § cot ¢ % cos® ¢ cot ¢ % cos® ¢
1-3 0-213 1-8 0-370 2-8 0-445 38 0-488 4-8 0-503
12 0-282 1:6 0-469 2-5 0627 3:5 0-689 4-5 0:714
1-1 0-317 1-4 0-501 2:0 0:706 30 0-806 4-0 0-850
1-0 0-329 1-2 0-492 1-8 0-698 2:8 0-821 3-8 0-872
0-8 0-310 1:0 0+449 1-6 0-672 25 0-821 3-5 0+887
0-6 ()-249 0-8 0-377 1-4 0+630 2:0 0-776 3-0 0-881
0-4 0-159 06 © 0-283 1-2 0-572 1-8 0-744 2-8 0-871
0-2 0-061 0-4 0-173 1:0 0-497 1-6 0:702 2-5 0-848
0-2 0-064 0-8 0-405 1-4 0-649 2-0 0-786

0-6 0297 10 0-505 1-6 0:706
0-4 0-179 0-6 0-299 1-0 0-5086
0-2 0-066 0-6 0-300
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R& M. 1674

Curves of K against sin @ For 2 bladed airscrews.
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sir cp

R3 M. 1674 Fig. 4.
Curves of K against sin @ for 3 bladed airscrews.
(Interpolated).
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Fig. S

R.&M. 1674

Curves of K against sin @ For 4 bladed airscrews.
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Rz M. 1674 Fic. 6.
Values of Kat x:07 For 2.3 4.6 8 blades.
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R.x M. 1674.

————————————

fis.8.

“Induced’ powar- loss _grading_cocfficient R, plotted against A

Two bladed airscrew P/D |5,
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R.a M. 1674,

otted against A

Profile drag power loss grading codfFicient R, pl
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RaM 1674

fic. 10.

Thrust grading_codfficient T, plotted against x?

(radius squared).

2 Bladed airscrew P/D |5. Values of A shown on curves.
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R.3 M. 1674,

Induced power loss gradi
5 plotked agair\:tq‘ac (radius squared).
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efficient R’

co &
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R& M. 1674

fic.12.
ilg loss grading_cocffici '
Profile drag pe\:vr- __m of ncm, plotbed

2 Bladed arscrew P/DIS. Values of A shown on curves,
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R.2 M. 1674.

Fig. 15.
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Ra M. 1674.

FiG. 16.
Effect of tip loss correction and total inmterfer-
-gnce correction expressed as percentage of total
Ehrust.
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