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Summary.—The initial buckling of flat recta.ngular panels under combined shear and compression has been investi-
gated theoretically in R. & M. 1965. This report extends the results given there to panels which are long and slightly
curved.

On aircraft with laminar flow wing sections, it is desirable that the wing cover should remain smooth up to a factor
of 13g, and to achieve this a possible type of construction is one in which stringers are dispensed with, and the cover
is reinforced with closely spaced ribs and stiffeners. These divide the cover into a large number of long and slightly
curved panels, and the results given in this report should be of value in estimating the combined shear and compression
which such panels can carry without buckling and so developing waviness.
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1. Introduction.—The initial buckling of flat rectangular panels under combined shear and
compression has been investigated theoretically in R. & M. 1965, and the purpose of this report
is to extend the results given there to panels which are long and slightly curved.

For flat panels, it is shown in R. & M. 1965' that the combination of shear stress ¢, and
compressive stress f, which will just cause buckling are connected by the relation—

(@) +(D)-

and for the slightly curved panels considered in this report it is assumed that the same relation
is approximately correct.2 Ou this basis the problem amounts therefore to finding ¢, and £,
for various curvatures and dimensions of panel.

* R.A.E. Report No. S.M.E. 3274, received 6th March, 1944.
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The buckling of a short cylinder in torsion, of which a long and slightly curved panel in shear
can be regarded as a special case (Fig. 1), has already been investigated theoretically by L. H.
Donnell.?  His treatment, however, involves a number of scarcely justifiable assumptions about
boundary conditions, and the more accurate solution developed in this report shows that

——
\"»_.,. i
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Donnell’s approximate values for the initial buckling stress are appreciably too high. A
comparison of the theoretical results found here with the experimental values obtained by
E. E. Lundquist* shows that for the small curvatures that exist over the major portion of a wing
the agreement is good. For larger curvatures, however, owing to the increasing importance of
initial irregularities, experimental values are less than the theoretical, and the latter are to be
regarded as an ideal upper limit for panels which are perfectly formed and accurately loaded.
The symmetrical buckling of a cylinder under end load, of which a long and slightly curved
panel in compression can be regarded as a special case (Fig. 2), has been investigated theoretically
by R. V. Southwell, S. Timoshenko® and others, and what is done here is to solve the fundamental

L
ARERNAREL
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equations derived by them for alternative boundary conditions. For slightly curved panels
there are very few experimental results available. But such evidence as is supplied by tests
on curved panels whose straight edges are much longer than their curved ones, suggests that

even for the small curvatures considered in this report experimental values of the buckling stress
are somewhat less than the theoretical.

2. Statement of Problem and Method of Solution.—The problem considered is the initial buckling
of a long and slightly curved panel under combined shear and compression. The applied shear
is constant round the panel, and the compression is uniformly distributed over the two curved
edges (Fig. 3). Owing to the length of the panel the type of support for the two straight sides
is unimportant, but for the two curved sides results are worked out on the assumption of clamped
or simply supported edge conditions. '

The method of obtaining ¢,, and £, is explained in the appendices.

Fic. 3
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3. Description of Results.—The following notation is used throughout :—

E = Young’s modulus

» = Poisson’s ratio (taken as 0-25)

h = semi-thickness of panel

@ = width of panel, measured along short straight edge

b = length of panel, measured along long curved edge

v = radius of curvature of panel

K = a non-dimensional constant = [3 (1 — »%)/z %12 a?/rh

f.. = stress at which panel buckles under compression alone

f.. = value of £, when panel is flat and the edges are simply supported

f = compression stress at which panel buckles when the shear stress is ¢
icﬂ' = fcr/f;:ro

g, = stress at which panel buckles under shear alone

q,, = value of ¢, when panel is flat, and the edges are simply supported

g = shear stress at which panel buckles when the compression stress is f
Bos = QerlGero

ke =4/,

The results are shown graphically in Figs. 4 to 7.

Fig. 4 refers to the case of pure shear, and gives the variation of %, with K for simply
supported or clamped edges. Donnell’s results are shown by the broken curves and give values
for the buckling stress which are between 10 per cent. and 20 per cent. too high.

Fig. 5 also refers to the pure shear case and shows how the wave length of the buckles varies
with K.

Fig. 6 refers to the case of pure compression, and gives the variation of %, with K when the
edges are simply supported or clamped.

Fig. 7 includes the results given in Figs. 4 and 6, and shows, for given K, i.e. for given curvature
and size of panel, the various combinations of shear and compression which will just cause the
panel to buckle. In Fig. 7 the full and broken curves refer respectively to simply supported
and clamped edge conditions.

Table 1 shows the values of K which correspond to typical values of @, 7 and h.

TABLE 1
Values of K
a 2h 7 K a 2h 7 K
6 0-036 100 3-4 9 0-036 100 7-6
200 1-7 200 3-8
300 1-1 300 : 25
0-048 100 2-5 0-048 100 57
200 1-3 200 29
300 0-8 300 1-9
0-064 100 1-9 0-064 100 4-3
200 1-0 200 2-2
300 0-6 300 1-4
0-080 100 15 0-080 100 3-4
200 0-8 200 1-7
300 0-5 300 1-1

All dimensions are in inches.
{71569) A2
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4. Conclusions.—This report shows under what combinations of shear and compression a long
and slightly curved panel may first be expected to buckle. '

In aircraft with laminar flow wing sections, it is desirable that the wing cover should remain
smooth up to a factor of 11g, and to achieve this a possible type of coustruction is one in which
stringers are dispensed with, and the cover is reinforced with closely spaced ribs and stiffeners.
These divide the cover into a large number of long and slightly curved panels, and the results in
this report should be of value in estimating the combined shear and compression which such
panels can carry without buckling and so developing waviness.
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APPENDIX 1
The Initial Buckling of & Long and Slightly Curved Panel in Shear

Fic. 8

Additional notation used in Appendix I :—
G = shear modulus = E/2(1 -+ »).

The co-ordinate axes 0X, OY, OZ are shown in Fig. 8, and are such that OX and OY are the
generator and line of curvature through the mid point of one of the curved edges, and OZ is
normal to the middle surface. Referred to these axes the edges of the panel are X=0,a;
Y = + b/2; and the equilibrium displacements #,, vy, %, are such that

X
%0:0,' 'UO:"—"G_"G—, ‘ZJZ)O:‘—O.
If this configuration is one of neutral equilibrium
g + u, Vo+ v, W+ w,

are also possible displacements, where «, v, w are indefinitely small but not all zero. Substituting
each of these sets of displacements in the shell equations obtained by W. R. Dean* for problems
of this kind and assuming that afr and %/a are small and of the same order, the three funda-

mental stability equations reduce to

¢ | ou cv W (1—9)0 fov  cuw\ _

Tx[é‘ﬁ ”<5?— yﬂ T é?(é*x*‘ﬁz) =0

(1 —v)y o [Jov  on ¢ v w on|
o sx\axt5v) Tax|\ey — 7 +rsx| =0

h?ga 02w 1[/7V  w o
(VA N S A N A ou
gV vt 2= s%ey 7KaY y>+”ax] 0.

* Pyoc. Roy. Soc. A, Vol. 107, 1923, p. 734.
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Putting these into non-dimensional form by means of the substitutions

X=% yv_%

x’ T
HeeG-m a5 (ze %) -
(B a |G )] e
fgv% + 2 (1 — »?) (%)2%5%—55[(% - %?‘)JF”%J =0

Introducing a stress function f for the purpose of simplifying the analysis, there result the

following five equations (only four of which, however, are independent, since equation (4) is
obtained by eliminating # and v from (H)-(3)),

we have

Ll %”Jr_g):_na% U
S %~%)=n~:—;‘£ L e
%—%—f)Jrv%:n%l; O
V4f+R%—2§:o, @
V4Zei——P‘§;];+Q;T2;§}=0, . . . - . o (5)

R S 10 I RLE-IC T SEE T

Case 1. Edges Simply Supported.*—It is now required to find a solution of the equations
(1) to (5) which satisfies the boundary conditions .

= v =0,
02 .. . - .. . . (6)
T

for x = 0, n ; and a solution of w and fis sought for in the form

W = w; COS MY + W, Sin my, 7)
f=ficosmy + fysinmy. [ " "
Here wy, wy, £, f,, are functions of x only, and m is real but otherwise unspecified (except in the
case of a complete cylinder when =#m/a must be an integer)
We express w, (s = 1, 2) in the form
o0

wS::EIAS,sinth,O<x<n
S

* For a more detailed description of the method uscd, see writer’s paper on a similar problem in Proc. Roy. Soc. A,
Vol. 162, 1937, p. 62.

T By considering the boundary conditions which w, must satisfy, it can be shown that it is legitimate to differentiate
this series term by term four times.
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and introduce the complex quantities W, F and A,, defined by the relations
W =uw, 4+ iw, F=7f+if, A =A4y-+idy
By this means w and f in (7) can be written in the form
w = (R) We=im, f = (R)Fe~™, .. .. .. . .. (8)
where (R) denotes real part.

Substituting for w and fin (4), F is then given by the differential equation

arr

d2F = .
i 2’%22{;‘% + mAF = R>> A,1%sin ix,

t=1

the general solution of which is
F = {A cosh mx + B sinh ma} + % {C cosh mx + D sinh ma

Qo .
A, t%sin tx
R e T .. .. .. .. ..

M= ®)
The next step is to determine the arbitrary constants A, B, C, D in terms of 4, from the
first two boundary conditions in (6). Since, however, these involve # and v, it is first necessary
to express # and v in terms of F and W. This is done by solving the equations (1), (2) and (3),

and the boundary conditions can then be expressed in the form

arr

gz M E =0,
d3F JAF  (1—»Ya dW _ |
cm_(2+v)m Zi_p_c_l—_.n—zy——- —%——0, ) .. . (10)

for x = 0, z. Now substituting for F and W in (10), the arbitrary constants A, B, C, D are
given by
AK = 2RXm (1 + ») {(8 — ») sinh ma cosh mz 4 ma (1 + »)}
— 2RYm (1 + ») {(8 — ») sinh mz + maz (1 + ») cosh ma},
BK = RXm (1 4 ») {m®2 (1 + »)2 — 2 (3 — v) sinh *ma}
— RYm?x (1 + »)2 (1 — ») sinh s,
CK = RXm? (1 + +)2 (3 — ») sinh *max — RYm3a (1 + »)? sinh ma,
DK = — RXm? (1 + »)2{(8 — ) sinh mx cosh mz + m= (1 + »)}
+ RYm? (1 + »)2{(3 — ») sinh sz + mm (1 + ») cosh mw},

~where K = m? (1 + »)2 {(8 — »)? sinh mm — ma? (1 + »)%},
oo w
_ (ot® — tm?) _
X‘“Z Az (t2+m2)2 —z Ath:
® (v13 — tm?) _ 2
Y = Z () Atm = Z (’*)t 4, K.,

These expressions for 4, B, C, D are now substituted in equation (9), with the result that w
and f given by (8) will satisfy all the fundamental equations and boundary conditions except (5).
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It accordingly remains to substitute for w and f in (5) and equate to zero the coefficient of ¢-.
Doing this we have

2 *° X ¢4 sin tx
= A, +mY?sintyx —imQ = 1 A,costx + PR A, 55
te=l t=1 =1 (t + m )H
— Pm?{A coshmx + B sinh mx + x (C cosh mx + D sinh mx)}
—2 Pm (D coshmx -+ C sinh mx) =0, . . . . .o (1)

which must be satisfied for all x in (0, #). The next step is to express in a Fourier series of sines
all those terms in equation (11) which are functions of %, and then to equate to zero the
coefficients of the sines. In this way we deduce, after considerable algebraic reduction, the
following system of equations

= PRt*
(2 4+ m?¥2 4, — z'anzd ¢, 4, + GETTE A,
e} s o}
+ (PR‘LI E KnAn + (—_)t z (_)nKuAn = 0 ¢ v (12)
ne=1 n=l
Here{=1,2, . . . . 0, and the ¢’s and L’s are given by
_nll—cos((+n)n 1 —cos(t—un)n
= 7 t+n + t—n ’
_ AmKT
P a1+ v)’
where TN = {(3 — v) cosh man sinh mz + mn (1 + )}
— cos tn {(3 — ») sinh ma + mx (1 + ») cosh maa},
and N = (3 — »)2sinh *mn — m222 (1 + »)2

Since the equations (12) are linear in the A’s, their only solution is in general that in which all
the A’s vanish. If however the determinant formed by eliminating the A’s itself vanishes this
is no longer true, so that the vanishing of this determinant provides the required equation
for g,. The order of this equation being infinite, ¢, has an infinite number of roots, one corre-
sponding to each possible form of instability. But since we are only concerned with that form
of instability which is most likely to occur in practice, it is only the smallest value of g, which
is of interest.
Introducing Z, defined by the relation

Z, = (12 4+ m?? + (7% + 2PRK,L,
the determinantal equation for the critical shear stress is
Z, —imQcy, 2RPK,L, —imQcy,
—1mQcy, Z, —1mQCyy 2RPK,L,
2RPK,L, —1mQCq Z, —1mQcy, =0. (13)
—mQ)cy, 2RPK,L, —1mQcy, Z,

To show that the solution given by equation (13) is not merely a formal one, it is necessary
to show that the determinant is convergent. The proof however is on exactly the same lines
as that given in the paper already referred to* and so is omitted.

~ * Loc cit. p. 6.
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As it is not possible to solve equation (13) directly, it is necessary to approximate to the
solution for Q, 1.e. for ¢,, by replacing the infinite determinant in that equation by the finite
determinant which contains its first #2 (# = 2, 3, . . .) elements. The results of the successive
approximations, and those obtained by Donnell, are given in Table 2.

TABLE 2
First Second Third Donnell’s
Approximation Approximation Approximation ; Results
K : |
m* bos | om? o m L By, | Fercentage
Increase

0 0-39 1-046 0-63 1-000 —_ — 1-003 0-3
1 0-75 1-134 0-78 1:071 0-78 1-070 1-144 6:9
2 1-05 1-307 1-1 P 1-211 — — 1-331 10-0
3 1-4 1-507 1-45 1-367 — — 1-515 11-0
4 1-7 1-712 1-8 1-524 1-8 1-521 1-693 11-3
5:5 2-1 2-020 2:3 1-754 — — 1-947 11-3
7 2-6 2-325 2:7 1-981 2-7 1-976 2-189 10-8
10 — — 3:6 2-420 3-7 2-400 2-643 10-1
15 — — 4-9 3-114 5-05 3:069 3-331 8:6

Case I1. Edges Clamped.—In this case we again try for a solution of w and f in the form (7),
but the boundary conditions to be satisfied are now

%=1 ={,
ow
w——é—g-c—O,

for x = 0, =, and it is no longer possible to express w, as a sine series which can be differentiated
term by term four times. Instead, it can be shown by expanding d*w,/dx* as a sine series and
integrating four times, that the corresponding expression for w, (s = 1, 2) is

e o]
ws:izl Agsintx + H, 4+ Ex + Jx? + Gx®. .. .. .o (14)

In (14) the sine series is such that it can be differentiated term by term four times, and H,, E,,
J., G, are given by

1 [s.9)
HSZO, ]52521{2-]_(_—)t}tA51:
o=
e 0} 1 0
E=—-—>1t4,G6G=—= {1 4 (=)} t4,.
$=1 )

Introducing E, J and G, defined by the relations
E=E +iE, J=]i+il, G=06+1G,,
we have, after substituting for w and f in (4), the following differential equation for F

arF

2 28]
W———Zmz%‘—}—m“F:R zAttzsintx-—Zj——GGx},

t==1
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which bhas for its general solution,
F = {A cosh mx + Bsinhmx} + x {cosh mx -+ D sinh mx}

[0's] .
A, t%sintx 2] + 6Gx
+ R [Z (2+m22 mé } :

The arbitrary constants 4, B,

The general procedure is now very similar to that in Case I.
C, D are determined from the boundary conditions, and in place of (11) there ultimately results

the equation
e8]
= A4, (82 + m?)Psintx 4 {mt (Ex + [«? 4+ Gx®) — 2m? (2] + 6 Gx)}

tw]
sin ¢x

o0 e}
— imQ = tA,cos tx — imQ (E + 2]Jx + 3Gx?) + PR A4 —
- = (t% 4 m?)?

FE

— Pm? {4 coshmx + B sinh mx + x (C cosh mx - D sinh mx)}

— 2Pm {C sinh mx + D cosh mx} = 0.
Expressing the left-hand side of this equation as a sine series, and equating to zero the coefficient

of sin ¢x, it follows that

o0 oo} oW
}2 "l— m?2 2A¢ + mt 6 An — 4m? jtu An — 3 Cp, An
= 2,

a=1 nes 1 =l

eo] e8]
, PR % A,
— lmQZ 8 An + 9 20 2 + PR Lt z An (Ku + q::)
(t + m ) n=1

=1

+ (=) 21 (=) A,(K, + q,,)][ — (U, +5) JE_I 4, .+ (=) = (—)”A,LP".H =0, .. (15)

where the ¢’s, K’s and L’s have the same meaning as in Case I, and the ¢’s, §’s, g’s, §’s, ¢’s,

U’s and S’s, are given by
4 : -
l = — a2+ (=) + (=) + 2=

= B (24 () (=) 2 ()

G = — {1 () 4 2o — (<)) L+ ()

b= 40 (<)),
SEED+ (—

7
g, = 1;,172 + 2t
3 2
2mi_ [an (1+ ) cos tx sinh mnm + 2———% _?_1—-72—2)1;) costxn sinh min

A | RO
+ (ﬁ—héj {3 — ») (1 — ») sinh Pma — w22 (1 + »)?)
— 2m? (1 3— ) .
idd ( t(2 _:_14:2’-)(2 ) sinh zwm} ,
4 tm . .
=55 (3 — ») sinh mz — mz (1 - ») cos i sinh ma)] .

S o m?)
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The equation for g, is now found from the condition that there exists a non-zero solution of the

system of equations (15).

Introducing N, defined by the relations
PR
@@+ md)?
+2PR [Li (K +g:) — p:(U; + Si)],
N,=m*e, — 4m?j,
(s # 1)

Ny = (@ +m?)? +mbe,—4m?j, +

+PR{14 (=)~ }[L.(K, +g,—5,(U. +S)]

this gives rise to the determinantal equation

Ny —11Q (C10+810) Ny —1mQ (C14+814)
— 11 (C1+ o) Ny, — 111 (Ca5+Las) Nyy

Ng — 1m0 (Cs2+Lss) Ngs —1mQ) (C34+8a4)
—imQ (€1 +8a1) Ny —1mQ (C45+84s) Ny,

—0. (16)

As in Case I, it is now necessary to consider the convergence of the determinant in (16), but the

proof is omitted as it is very similar to that given in the paper referred to.*

The procedure is now the same as in Case I, except that attention is confined to the second
approximation, found by taking the first three rows and columns of the determinant. The

results, together with those derived by Donnell, are given in Table 3.

TABLE 3
Second Approximation Donnell’s Results
K me B k., PIercentage
ncrease
|
0 1-5 1-664 1680 , 09
i 1-6 1-689 1-787 5-8
2 1-7 1-753 1-949 11-2
3 1-9 1-846 2-124 15-1
4 2-2 1-952 2-302 18-0
5-5 2:65 2-130 2-560 20-2

*Loc. cit. p. 6.
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APPENDIX II
The Initial Buckling of a Long and Slightly Curved Panel in Compression

Fig 9.

Additional notation used in Appendix II :—
D = flexural rigidity = 2EA3/3 (1 — »2).

The co-ordinate axes 0X, OY, OZ are shown in Fig. 9, and the equation of neutral equilibrium,
applicable to types of distortion in which there are no displacements parallel to the Y axis, is—

d*w

d%w w '
DW—"—Zhﬁin"*—th;’—z‘:O- . . .o . (17)

It remains to find the smallest values of f, for which there exists a non-zero solution for w
satisfying the required boundary conditions.*

Case I. Edges Simply Supported.—For this case the boundary conditions are

d%w a
w — EF == O, for X = i “2‘ 5
wis A sin 277 (m even) or A cos Z”%‘f (m odd) ;

and the corresponding values of £, are given by

D2 2 Ea?
Jo = Sha? miniy?

(18)

Case 11. Edges Clamped.—The boundary conditions are now

dw a
w = —d—x— =0,f0rx=j:§~,

and the solution is in this case more complicated.

* See S. Timoshenko, ' Theory of Elastic Stability ”, First edition, p. 81.
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If w is an odd function of x, i.e. if the form of distortion is anti-symmetrical with respect to 0O,
w is
A, sin ax 4+ B, sin fx,
where A4, I3, are constants whose ratio is determined by the boundary conditions,

o= [f, +{£2—2ED hr }'*] /D,
p2=[f, — [£.2—2ED myr}'"*] D,

and the equation for £, is

ﬂtan pa pa te x4

Y o=t Sho L (19)

el

If w is an even function of x, i.e. if the form of distortion is symmetrical with respect to 0, w is
A, cos ax + B, cos Bx,

where 4., B, are constants whose ratio is determined by the boundary conditions, and the
equation for f,, is

wa . wa_ o
—Z‘tan—2‘——— ) tan 5 .. .. . .. . (20)

Owing to the different types of distortion which are theoretically possible, the equations for
Jo 162 (18), (19) and (20), are multi-valued, and the two curves given in Fig. 6 are the envelope
of all possible solutions when the edges are either clamped or simply supported.




30 e
e ™ - -
P | —
— -
EDGES CLAMPED -7 1 ]
DONNELL'S SOLUTION - - -7 "
o ACCURATE. SOLUTION PPt /_,f’ -

14

Z Sl e
crs EDGES SMPLY SUPPORTED " /
DONNELL'S SOLUTION—, .~ VARIATION OF BUCKLING STRESS WITH
ACCURATE. -1 CURVATURE WHEN LOADING 1S
SOLUTION = PURE SHEAR.
oy ==
/)‘ %] = ger [ 9ero
rn
Vs . - n
AF e K = {30-\)2)/.“.4-} a'/*h
& l
Ger
o] 10 2-:0 30 40 50 . 60 70 80 9-0 10-0°
PRACTICAL RANGE K
Fic. 4
a0
2-5
VARIATION OF WAYE LENGTH OF BUCKLE
WITH CURVATURE WHEN LOADING
\ EDGES SIMPLY SUPFORTED \S PURE SHEAR
20 EDGES CLAMPED
2
RATIO OF K =[3(-v)/na =
WAVE LENGTH \ { / } atfvh
TO WIDTH
\
OF PANEL
53
l.o \ ———— ]
AT Bt
— ~ | - -
05 WAVE LENGTH
1
&) [Re] 2.0 30 40 50 K 60 70 80 9:0 10-0
R — PRACTICAL RANGE




15

120 /
/ EDGES CLAMPED
10-0 /*
‘ / /
-
'
890 EDGES SIMPLY SUPPORTED
J'GY‘ /
[:Ze]
Y / VARIATION OF BUCKLING STRESS WITH
ere CURVATURE WHEN LOADING IS
/ PURE _COMPRESSION
4+ '& { o
tre = fcr/f ro
|2
K = {3@- vz)/vr4-} %/rh
20
______/
0 0 25 30 40 50
o PRACTICAL RANGE= = === = = = = == = === ot = e i -
K
Fic. 6
0o
L e e
“~\\\ VARIATION OF BUCKLING STRESS WITH
120 =< CURVATURE WHEN LOADING 1S COMBINED
~e SHEAR _AND COMPRESSION.
N
HOp~—— e S ~e 4
T~ S~ e = ’c/fc'r'o
100 o - 2
~ =
\ K" g \\\\ \\\ 3 g/%rc Ié
2 2
aok_______| \ s N N K o= B } o fh
_____ ~

te FULL CLRVES REFERS TO PANELS
WHOSE EDGES ARE SIMPLY
SUPPORTED.

BROKEN CURVES REFER TO
PANELS WHOSE EDGES ARE
CLAMPED

\K:E
N

(71559) Wt, 9/7116 3/46 Hw., G377/1



Publicztions of tae
Aeronautical Research Committee

TECHNICAL REPORTS OF THE AERONAUTICAL
RESEARCH COMMITTEE—

1934-35 Vol. I. Aerodynamics. 4os. (40s. 84.)
Vol. II. Seaplanes, Structures, Engines, Materials, etc,
405. (40s. 8d.)
1935-36 Vol. I. Aerodynamics. 30s. (305 7d.)
Vol. I, Structures, Flutter, Engines, Seaplanes, etc.
30s5. (305 7d.)
1936 Vol. I. Aerodynamics General, Performance, Air-
screws, Flutter and Spinning. 4o
(40s. 9d.)
Vol. II. Stability and Control, Structures, Seaplanes,
Engines, etc. 5os. (505 104.)
1937 Vol. 1. Aerodynamics General, Performance, Air-
screws, Flutter and Spinning. 4o0s.
(40s. 9d.)
Vol. II. Stability and Control, Structures, Seaplanes,
Engines, etc. 6os. (61s.)

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH

COMMITTEE—
1933-34 15. 64. (15 84.)
1934-3§ 15. 6d. (1s5. 84.)
April 1, 1935 to December 31, 1936.  45. (45, 4d.)
1937 2s5. (25. 2d.)
1938 15, 6d. (1s. 84.)

INDEX TO THE TECHNICAL REPORTS OF THE
ADVISORY COMMITTEE ON AERONAUTICS—

1909-1919 Reports and Memoranda No. r6oo. 8s. (8s. §d.)

Prices in brackets include postage.
Obtainable from -

L L] % L %D
His Majesty’s Stationery Office
London W.C.2: York House, Kingsway
Edinburgh 2: 13a Castle Street Manchester 2: 39-41 King Street
Cardiff: 1 St. Andrew’s Crescent Belfast: 8o Chichester Street

or thrO\Tgh any bookseller. ‘

8.0. Code No. 23~1972




