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SUMMARY

Recent work has drawn attention to the importance of the critical
flutter velocity in applying cascade data to axial compressors. The hope
has been expressed that i1t was primarily an aerodynamic phenomenon, though
the possibility of mechanical damping being an important factor was not
excluded. In this Report the mechanism of stalling flutter has been re~
examined to establish, as far as i1s at present possible, the major para-
meters involved,

On the basis of the hypothesis advanced, the factors governing the
critical flutter velocity have been isolated. The variation of this
vclocity with respect to blade thickness has been deduced, and compared
with test resulis. Agreement 1s good, but further work is necessary
before the hypothesis can be accepted "in toto". Mechanacal damping
appears to be amajor parameter, and may severely limit the practical

application of the theoretical solution.
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1.0 Introduction

In a recent report {Reference 1) attention has been drawn to the
importance of the craitical flutter velocity, or Mach number, in applying
cascade data to axial compressors. The hope was expressed in that report
that it was primarily an asrodynamic phenomenon, though the possibility of
mechanical damping being an important factor was not excluded. In this
Report the mechanism of stalling fluiter has been re-examined in order to
cstablish, as far as is al present possible, the major parameters involved.
The "critical flutter velocity" has been defined as the velocity at which
stalling flutter becomes appreciable. This term is used even though stal-
ling flutter appears to be a "sof't" vaibration.

Throughout the Report standard notation {Reference 2) has been adop-
ted. Additional symbols have been defined in the text.

2.0 Theoretical investigation

241 Review of previous work

The general equation of motion of a vibrating blade can be written

mse + .72‘ - 5 . m}‘c + wzmx = F(XJ.C:'}E) .s . (1)
where x = displacement
w = Ffrequency of vibration

8 = logarithmic decrement in vacuo {strictly
5= f(}t))

m = mass of blads per unit length

and F (x £ %) = the deviation of the total aerodynamic force
per unit length from its equalibrium value
in steady flow.

The function P (x x %) 1s oxtromely complicated. This is particularly
80 in the sialling region. So far as the author is aware only two attempts
have been made to represent the function mathematically and so solve the
equation. DBoth solutions are based on the assumption that the aerodynamic
force on a blade during vibration is the same as that on a static blade at
the instantancous inlet angle. This is not a sirict representation of the
physical phenomenon, of course. it neglects aercdynamic hysteresis, which
is known to be present (Reference 3 and Figure 1). Nevertheless 1t forms a
useful starting point.

The first solution to equation (1) was given by Den Hartog in connec-

tion with the vibration of electric transmission linss (Reference 4). He
put
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where k, ¢, and ¢, are constants. Equation (1) then reduces to Van der
Pols equation for which a solution is known.  Sisto {Reference 5) carries
the solution a step further by making the aerodynamic force a function of
the inlet angle. He puts

'

iy (x }.{ ..X:- f(Ui) where Gi = U.In + x/vm e .“e (h‘)

5

1l

constant . .e .o .o .s (5)

F (x % ¥) 1s then expressed as a power series in a,. By choosing the
constants in the power series appropriately, Sisto's approach can be made
a closer representation of physiecal case than Den Hartog's original treat-
ment.

The extent to which Sisto's solution represents the actual physical
phenomenon may be gauged from Figures 2 and 3, which compare some calcu-
lated and experimental results. The agreement is not very goed though a
certain similaraty is present. In particular it will be noted that in the
slalled region wherc the slope of the force coefficient-incidence curve is
positive theory would predict no flutter. The reascn for the discrepancy
15, most probably, the neglect of aerodynamic hysteresis.

Both Pearson {References 6 and 7), Kilpatrick (References 8 and 9)
and the author , have assumed that the damping, &, can, an the
limiting case, be taken as zero. If it 13 assumed as before that

F(x%¥) = o * R €.

it can be shown {see Refercnces quoted) that

o Cos - dF Sinfla, - 7
o = R Gslanl) @ -2 (g
o(‘L1 Mn s} Mn Vc
aE/ oF
whore Em.1 and oM, are the derivaitives of the static force curve

vith respeet to the [Tuad inlet angle and lach number respectively. Flutter
will occur when the aerodynamic damping (- ¢, X) becomes negative. Various
attenpts have been made to correlate flutter with equation (6) or parts of
1t. Mo attompt has been wholly satisfactory, again probably due to neglec-
ting asrodynamic hysterisis. .

242 Fetamation of eritical flutter velocity with phase lag

A cloger approximation to the actunl flow conditions can be obtained
by asguming that the aesrodynamic force on the blade lags behind the motion
of the blade by an unknown angle, ¢. Assuming sinusoidal motion the

- s

function ¥ (x % %) 1s then given by
F(xxXx) = Fgxo wCos (wt - ¢) e ee ee e (7)

where Fy is an acrodynamic constant and xo 1s the maxamum amplitude of the
blade. It can then be shown {see Appendix I) that the work done per cycle



by the asrodynamic force is
x d0p
A = /2p v, ¢ /aa Cos (a1 -Z) x,? w Cos ¢ .o (8)

Flutter will occur if this 1s greater than the work done by the damping force,
but no flutter will occur if it is less than thai. The critical flutter
veloecity will be given by equating these quantities. From whaich, as shown in
Appendix I

Vf = Kftf 60 O-/P Y . » L) [ ) LA - (9)

where K¢ is soms constant dependent only on the aerodynamics, and 8y is the
logarithmic decrement in the neutral position.

It is rather interestang to note that using Sisto's solution to the
general equation (1) the critical flutter velocity will be given by the same
equation (see Appendix II), though the constant K¢ will have a different
physical significance.

From a practical point of view, therefore, equation (9) can be used
with some confidence to predict the critical flutter velocity irrespective
of the fundamental theory used in deriving it, so long as the constant Kf is
determined directly from the experimental results. One might expect that,
for any blade, Kf will be a function of incidence and, on phase lag theory,
a function of the frequency parameter.

243 Application of theory to experimental investigation

Of the quantities in equation (9), the constant K¢ and the damping,
a3 oxpressed by the decrement 65, are the most daffacult to measure. The
best test of equation (9) 1s therecfore one in which both of these guantities
are kept constant. This 15 most easily done by concentrating the tests on
a given blade. The series of tesis described in the next section were
carried out by thinning down one typical compressor blade, go meeting the
conditions outlined above. The blade natural frequency —vill be given by

f‘b = k' t/ha .. . . - . - .e (10)

We then have, since the blade material density and air density are constant,
and alsc the blade height in these tests.

Ve = k" (E.)z = k t° O € £

where k is some constant,

5.0 Experimentel investigation

3.1 Bquipnent

The tests were carried out in the very saimple cascade tunnel shown in
Figure 4. Air was supplied under pressure to the 2 in. square working
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section via a 20 : 1 contraction. It was then discharged to atmosphere
through the cascade. The cascade was mounted 1n a turntable carried in
the floor of the tunnel so allowing the incidence to be varied. The top
of the tumnel was made of perspex so that any vibration could be observed
directly.

No treversing gear was ugsed. The only instrumentation consisted
of 'a prtot situated in the inlet section and wall static tapping situated |,
Just ahead of the cascade.

The cascade was made up of blades having the following spccifa-
cation: -

Basc Profile C.1

Camber Line Circular Arc
Camber Angle 45°

Stagger Angle -17°

Chord 0.667 an.
Height 2.0 zn,
Aspect Ratio 3.0
Pateh/Chord Ratio 0.80

The blades of the cascade had a maximum thickness of 13 per cent
chord. However the central blade, which was the only one under test was
thinmed down successively from 9.7 por cent to 6.6 per cent chord. Vibra-
tion wag recorded on the central blade only, and for the majority of the
testling the remaining blades were not vibrated. No measurement of blade
material and root damping was taken at the tame of the tests.

3.2 Tost technique

It should be pointed out that these tests ‘ere carried out some years
ago, before the more refincd focchnigues now being used {sce References
9 and 10 for examplc) were developed. Nevertheless the data obtained is
reliable within the lamits of the test procedure, and is considered adeguate
for the analysis 1in hand.

Testing consisted of setting the cascade at a fixed incidence. The
alrspeed was then very gradually increased until flutter was observed visu-
ally. The prtot and static pressures were noted and the test repeated at
other incidences, usually in 1° steps. The critical flutter velocaty could
then be calculated, Having witnessed both these tests and those carried
out under modern conditions the author would estimate that the critical
flutter wvelocarty obtained in this manner corresponds to an alternating
flutter stress of about + 10 tons/in?.

Tests were first carried out on a blade 0.064 in. maxamum thackncss.
The blade bhickness was then reduced by hand in steps of about 0,003 in.
down to 0,045 in. This blade broke under test. All the tests reported
in this note werc carried out on the same blade so that the root damping
may be supposed to be constant.



3.3 Test rasults

The test results have been presented graphically in Fagures 5 and 6,
where the critical flutter Mach number and the critical flutter velocity,
respsctively, have been plotted against incidence. Eoth torsional and
flexural vabration was encountered on these blades, though the test notes
indicote that the flexursl form usually appeared first with increasing Mach
number. The flutter appeared to be more uniform than present records indi-
cate, but this may well have been an optical illusion. Some choking flutter
was observed at high Mach nmumber and negative incidences, but has not been
recorded in thiz note. The curves plotted represent the stalling flutter
boundary zone, and define the incidence and velocaty limitations.

4.0 Discusaion of results and further work

The critical flutier velocity has been plotted against section thick-
nesg on a logarithmic basis for a number of representative incidences in
Figures 7 and 8. The best straight line through the test points has been
drawn in and also, for comparison, the curve given by the expression

\ Vf = ktZ LIy . a L] L) .8 e (11)
Assumaing that the test results can be represented by the equation
vf = ktn ) e . . . e (12)

values of "a" have been determined and plotted sgainst incidence in Figure 9.
It will be seen that agreement between the experimental and theoretical
values is geod, though the test results would show a varzation of "n" with
incidence. Reforring back to equalion {9) 1t is dxnfficult to see which of
the factors is dependent on "t" in a manner whach varies with incidence. All
can be eliminated except Kp. DBxamination of isolated acrofoil data suggests
that the blade maximum thickness hag lattle effect on the aerodynamic beha-
viour above stall (see Reference 11 for vxample), i.e. one would expect Kg

to be constant at any given incidence. Huwever the departurc of "n" from
its theoretical value is so small that the theoretical curve could be used
in most cases with sufficient praclical accuracy.

On the evicence of the theoretical and experimental results quoted
in thas Report 2t would appear that cstimation of the critical flutter velo-
city is amenable to very simple theore*ical treatment. It is true that only
two of the parameters have been varied. The general equation for the criti-
cal flutter velocity deduced in Section 2.2 is

Vf = Kf t £ 50 0‘/P e e e ') (9)

and before any reliance can be put in this ecquation further work using re-
fined technlques is nccessary. An investaigation inte the effoct of air
density is already well in hand, and will be reported later. An additional
examination of the frequency effect, by change of blade height, 2s also in
hand. In all this work a major unknown factor airises from changes in the
damping.  Although damping can be measured 1t 1s doubtful 1f sufficient
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accuracy is being obtained by present techniques. More generally, the
hope expressed in the introduction that the damping would only occur in the
equation (9) as a second order term has not been fulfilled by the theoreti-
cal investipation. The inability to predict the damping of blades without
resort to test seems an insuperable obstacle in the way of a genersi practi-
cal application of equation (9).

5.0 Conclugions

A theoretical investigation hag been made into the factors gover~
ning the critical flutter velocity. On the basis of the hypothesis
advanced, the vurzation of the critical flutter velocity with respect to
blade thickness has been deduced and compared with test results. Agree-~
ment 1s good, but further work ls necessary before the hypothesis can be
accepted "in toto". It would appear thal the blade damping 2s a major
parameter in determining the ecrilical flutter velocity, and thas entails a
severe practical handicap in generally applying the theoretical formula.
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AFPENDIX T

Derivation of Equation (8)

It 1s known from the solution of the general equation (1) given by
Den Hertog that, with typical values of the constants in equations (2) and
(3) the motion of = blade in stalled flutter will be approxamately sinusoidal.
This 15, of course, confirmed by experimental evidence. We can thus writle

X = XO Sin wt .

. O )

e
i

and Xo w Cos wt -

v e ee e ee e (14)

vhere x,; is the maximum emplitude, and may be a slowly varying function of
time.

The asrodynamic force function F (x x X) can then be written

F(xxX) = xF; = x,uCoswt - Fy B G )

vhere Fyx is a constant depending only on the aerodynamic conditions, Assuming
that the aerodynamic force on a blade during vibration is the samc as that on

a static blade at the instantaneous angle of attuck, it can be shown (Ref-
erences 7 and 10) that

Fi - aF COS(UJ‘ - ZJ) e - 8 - - L g - . (16)
AR v,

aF
where the term:containing élin has becn neglected when considerang stalling
flutier

d
LI ) F}'{ = % P v‘ C CF/aCL COS(CL1 - é) -w .. e (17)

A value for ¥ (x % ¥) may be obtained by substituting for Fy into equation
(45), but a closer approximation to the physical phenomenon may be obtained

by introducing an arbitrary phasc lag, ¢, of the aerodynamic forces behind
the motion of the blade. Hence we get

. o 3
F(zxxX) = % wCos(wt =9} %PV, ¢ Cmyéa Cos(a, -%)  (18)

the work done per cycle by this force will be
NS

AW = F(x£% % at o e ee e {19)

Lo
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]
or AW = -"‘:"-3'::‘.3'f o X,° w-(-j-F-Gos(c.i-Z,)COScp
2 Fo]o!
Now the kinetic energy absorbed in damping per cycle is given by

AW 2w6 .s L) . s e * . [}

il

where W

il

Fm xo? w? ce e ae ae ee e
m being the mass of the blade per unit length.
Hence 4 W = m X2 w? & v ar . es xs ee  as
Hence flutter will occur when
3Cp

PV, cx? o Cos(e, -Z) Cosg>m X2 o 8
dq,

raf R

or the critical flutter velocity will be given by

Ve = mw&o .

1\"/2 pc aCF/aa Cos(a, = &) Cos ¢

writaingm = kcto .o - .e . .o .e
andw = 2xf{ e ee e ce  as e e
and Ky = b k . .o .

aG‘F/au Cos(a, =g) Cos ¢

we get Ve = Kp bt £ 8, %0 e se xe s es

LR

LR 4

(20)

(21)

(22)

(23)

(24)

(25)

(26)
(27)

(28)

(29)
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APPENDIX IT

Derivation of Bquation (8) from Sisto's solution of Eouation I

In the notation adopted in this Report, Sisto gives the following
expression for the equalibrium flutter ampliiudes

~

('}%2)2 = 2 {acF/aa + <4m/w P cz) (wc/zv) (5 >} {ZV/“C}Z (30)

3
O/
' The critical flutter velocity will then be given by x5 = o
-.. —-aGF =] 4m . we . 6 .w .. - .o (31)
o, np c? 2 Ve
Or writing as before
m = kct(r . . X . . X .e (26)
and W = 2ﬂf .e .e e . e e s (27)
we get
a2
Vf = gkatfa /P . L . e L e (32)
Qﬂ/aa
or Vf = Kftf&cr/p - .. . .. e . (33)
8
where Kf = k/aCF/aCL. s . . . .o .e (3]—}-)






1G.1.

O
o

T ——

D
'S

— —  e—— .

;
I

LIFT CQEFFICENT Cf
O
o

]
o
n

O

&° iQ° 5 20’ as’° 30°
ANGLE QF ATTACK

STATIC WFT = INCIDENCE CURVE.
RYNAMIC LIFT - INCIDENCE CURYE.

AEROFOIL  NACA 6-5403
STAGGER -52°
PITCH /CHORD 1-0

RESULTS GIVEN BY JAN R, SCHNITTGER REFQ

COMPARISON OF STATIC AND DYNAMIC
LIFT INCIDENCE CURVES.




MEAN AERODYNAMIC BLADE FORCE
MAX VALUE OF MEAN AERODYNAMIC BLADE FORCE

INGET VELQCITY

FIG.2,

1"0 ‘\

ol N

N

06 N

04}

Oa / 3] ‘] °
a g 5 Q° ] <® es’ nls)

ANGLE OF ATTACK MEASURED FROM ZERQ FORCE

(@) ASSUMED FORCE - INCIDENCE CURVE
200 —

{000

FUND CANT. MODE 340cps. o = 0

m/Tdgfs - 416 Af:://: - o

/)]
/]

8

FT./ssc.

0° s {Q° {8 4a) es* 30
ANGLE QF ATTACK MEASURED FROM 2ERQ FORCE

(b) CALCULATED STALLING FLUTTER AMPLITUDES

CALCULATED STALLING FLUTTER IN A
REPRESENTATIVE CASCADE.




MEAN AERODYNAMIC BLADE FORCE
MAX. VALUE OF MEAN AERODYNAMIC BLADE FORCE

INCET VELOCITY FT/SEC.

O

O
o

O
Fe

x A
7/
oe i
as’ 40° 45 50° ss° &0° 68
AIR INLET ANGLE (=t,)
(@) MEASURED FORCE-INCIDENCE CURVE
1200
1000 7\
800 )
CASCADE DATA IS TONS /O

SECTION  10C4/20€50 /_?
600} sTAGGER - 34 \

PTCH/CHORD 0 \1 AN

ASPECT RATIO 30 ]

FUND. CANT MODE 340 c.p.8.
400}

d 5'0'007

m/Né)-SSd-
200
o '] ] [] 4
3s’ 40 45 50’ s 60 &5’

AR INLET ANGLE (=,

(B) MEASURED STALLING FLUTTER ROOT STRESSES

MEASURED STALLING FLUTTERIN A
REPRESENTATIVE CASCADE.




FIG.4.

TURNTABLE

TEST

o..,'

\\\\\\\\&\ AL SIS \\\.\\\\\\\\\\.\.\\\\ —— l‘v\k\\\\\\k\\\ -— ll

ANUNNNNNY 7 NNNEENNNNNNENNNNNNNNNNY, -

‘!I-Illl(-”

&
=
8

AR

/ LIIIISS L ISTE I

NN
LIS S IS ILLLSLL LA SISSSSLS SIS S BIS LTV L S S S AS LSS Y s

TURNTABLE

N
AR
B

DETAILS OF ROQT FIXING

scace Y

VIBRATION CASCADE TUNNEL




FIG.S.
I "
BLADE THICKNESS

M~ 0T \n
VNVY WD
slaYalsYqlela]

R T O I I A |

0044 - 2 345

00000000
| @YD [La

~
J
O
0Q000020
|
VO
49
o

V\\\\\

e
"

{§° 20’

i0°

08
Q7

(V)
Q

N
O

(“W) d38ANN HIOVW

04

. INneiDENce (L)

CRITICAL FLUTTER MACH NUMBER/




INCET VELOCITY FT /sec:.

»
3

{200

FIG. 6.

1100

ObE4dOX A RO

BLADE THICKNESS|

~J
O
Lo

g

4001

eQo

5° 10" §° . ac es’
InciDeENcE (1)

CRITICAL FLUTTER VELOCITY,

30



FIG.7.

300
/
3 ’
<2 700 /-
. 600 - /
-
G - )
3
— EXPERIMENTAL CURVE.
l_." —— THEORETICAL CURVE.
Z 400 |
003 504 0085 006 00 E‘L—dm 210

BLADE MAXIMUM THICKNESS = NS,
(@ INCIDENCE = 6-0°

S00 }

800 /
Li [

700
%

600
).
._
g
J 500 :
> —— EXPERIMENTAL CURVE
f.] ——-THEORETICAL CURVE
. |

400
FA "
Z //

Q03 004 00S 008 0©O0O7 Q08 508 Q10
BLADE MAXIMUM THICKNESS - INS.
]
® INCIDENCE = {{.0

CRITICAL FLUTTER VELOCITY v THICKNESS




FIG.8. -

900 ,
800
4 200
2
|,..
h
, 600 .
g s
g — ERPERIMENTAL CURVE
.*j —-—THEORETICAL CURVE
0-3.5 .04 008§ 006 007 008 038 010
BLADE MAXIMUM THICKNE?S- INS -
@) INCIDENCE = 16-0
800
800 //
; 1/
Y 700
™~
L
600
>.
-
§ a0
> —— EXPERIMENTAL CURVE
uj | —-— THEQRETICAL CURVE]
Z 400 7/
a¥a%) 004 005 00& 007 008 009 00

BLADE MAXIMUM THICKNESS- INS.
(b) INCIDENCE =2(-0'

CRITICAL FLUTTER VELOCITY v THICKNESS.




FIG.9.

300
W
)
Z
W
0
4G
NES CURVE THROUGH
EXPERIMENTAL POINTS.
ES \//
250 — 33
b
00| -
£ '
¥ THEORETICAL
3 VALE \
z N »
150
Vg -k g™
+o0 .
o' 0o 20’ a0

iNncioenee (L)

VARIATION OF ‘t” INDEX WITH INCIDENCE,

DEFESALS /R B0 1O/R L.









Crown copyright reserved

Printed and published by
Her MAjJESTY’s STATIONERY OFFICE

To be purchased from
York House, Kingsway, London w ¢ 2
423 Oxford Street, London w3
P O Box 569, London s.E 1
134 Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol 1
2 Edmund Street, Birmungham 3
8o Chichester Street, Belfast
or through any bookseller

Primted 1n Great Britam

C.P. No. 26!
(12,730)
A.R C Technical Repo

8.0 Code No 23-9C

C.P. No. ’



