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Recent work has drawn attention to the importance of the critxxl 

flutter velocity in applying cascade data to axial compressors. The hope 

has been expressed that it was primarily an aerodynemic phenomenon, though 

the lxmsibility of mechanical damping being an important factor was not 

excluded. In this Report the mechanism of stalling flutter has been i-e- 

examined to establish, as far as is at present possible, the mqor para- 

meters involved. 

On the besis of the hypothesis advanced, the factors governing the 

critical flutter velocity have been isolated. The variation of this 

velocity xicith respect to blade thickness has been deduced, and compared 

with test results. Agreement is good, but further work is necessary 

before the hypothesis can be accepted "in toto". Mechamoal damping 

appears to be ama~or parameter, and may severely limit the practical 

application of the theoretlcal solution. 
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1.0 Introduction 

In a recent reprt (Reference 1) attention has been drawn to the 
inportance of the cnticsl flutter velocity, or Mach number, in applying 
cascade data to sxlal compressors. The hope ws expressed in that report 
that it was pruner ily an aerodynamic phenomenon, though the possibility of 
mechanical damping being an important factor was not excluded. In this 
Report the mechanism of stalling flutter has been E-examined in order to 
establish, as far as is at present possible, the mayor parameters involved. 
The "cntlcal flutter velocity" has been defined as the velocity at dich 
stalling flutter becomes appreciable. This term is used even though stel- 
ling flutter appears to be a "soft" vibration. 

Throughout the Report standard notation (Reference 2) has been adop- 
ted. Additional synbols have been defined in the text. 

2.0 Theor-etlcsl investlgatlon 

2.1 Review of previous work 

The general equation of motion of a vibrating blade can be written 

mZ+L!$. 6 . rnk + &mx = F (~$2) . . . . (1) 

where x = 

LJ = 

ii = 

tisplacement 

frequency of vibration 

logarithmic &ecrement in vacua (strictly 
6 = f(x)) 

m = mass of blade per unit length 

and F (x 2.2) = the deviation of the total aerodynamic force 
per unit length from its equilibrium value 
m steady flow. 

The function F (x 2.2) 1s cxtrcmely complicated. This is particularly 
so in the stalling region. So far as the author is aTrare only two attempts 
have been made to represent the function mathematically and so solve the 
equation. Both solutions are based on the assumption that the aerodynamic 
force on a blade during vibration is the same as that on a static blade at 
the instantaneous inlet angle. This is not a strict representation of the 
physical phenomenon, of course. It neglects aerodytmnnc hysteresis, whloh 
is known to be present (Reference 3 and Figure 1). Nevertheless It forms a 
useful starting point. 

The first solution to equation (1) was givenby DenHartog in connec- 
tion with the vibration of electric transmission lz~rujs (Reference 4). He 
Put 

F(xkY) = k . . . . . . . . . . (2) 

6 = c, x2 . . . . . . . . . . . . !3) 
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where k, c, and c2 are constants. where k, c, and c2 are constants. Equation (I Equation (I ) then reduces to Van der ) then reduces to Van der 
Pals equation for which a solution 1s knovm. Pals equation for which a solution 1s knovm. Sisto (Reference 5) carries Sisto (Reference 5) carries 
the solution a step further by making the aerodynsmic force a function of the solution a step further by making the aerodynsmic force a function of 
the inlet angle. the inlet angle. He puts He puts 

F (x 2 'x') = f(Qi) where ~i 5 & + "Vm . . . . (4) 

s = constant . . . . . . . . . . (5) 

F (x j, 2) is then expressed as a power series in ci. By choosing the 
comtants in the pcver serre s appropriately, Sisto's approach can be mace 
a closer representation of physical case than Den Hartog's original treat- 
merit. 

The extent to which Sisto's solution represents the actual physical 
phenomenon may be gauged from Figures 2 and 3, which compare some oalcu- 
lated and experimental results. The agreement is not very good though a 
certain similaraty is present. In partacular it will be noted that in the 
stalled region where the slope of the force coefficient-incidence curve IS 
positive theory would predsct no flutter. The reascn for the disorspency 
is, most probably, the neglect of nerodynanuo hysteresis. 

Doth Pearson (References 6 and. 7), Kilpatriok (References 8 and 9) 
and the author , have assumed that the dsmping, 6, can, in the 
limiting case, be taken as zero. If it is assumed as before that 

F (x ; 'x') = o, ;r . . . . . . . . .* . . (2) 

it can bc shown (see References quoted) that 

aF -ct = -- - cos (n, - z) +ap Sin (a, - c) 
an, & Vo a& VC 

(6) 

where 
aF/ aF/ 

a+ and aq are the derivrtsves of the static force curve 
mith respect to the Fluid inlet angle and blnch nwnber respectively. Flutter 
xi11 occur when the aerownc damping (- c,;) becomes negatrve. Various 
attcnpts havt been made to correlate flutter vith equataon (6) or parts of 
1t. No attcizpt has been wholly satisfactory, again probably due to neglec- 
tlng aemQmunc hysterlsk3. . 

2.2 Estimation of critical flutter velocity with phase lag 

A closer approxLmation to the actual flow conditions can be obtained 
by assuming that the aerodynamic force on the blade lags behind the motion 
of the blade by an unknown angle, 'p. 
functionF (x S X) is then given by 

Assuming sinusoidal motion the 

F(xj:‘;;) cz Fj: x0 w Cos (wt - cp) . . . . . . . . (7) 

where F, is an acrodynemic constant and x0 LS the msz.mum amplitude of the 
blade. It can then be shown (see Appendix I) that the work done per cycle 
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by the aerodynamic force is 

u?i = x/2p V, 0 “iaa Co.9 (a, -El x0* w cos ‘p . . (8) 

Flutter will occur if this 1s greater than the work done by the tiping force, 
but no flntter will occur if it is less than that. The crltlcal flutter 
velocity will be given by equating these quantltles. From which, as shown in 
hppw3ix I 

Vf = Kf t f 8, "/p . . . . . . . . . . . . (9) 

tiere Kf is some constant dependent only on the aemdynam~cs, and 6, is the 
logarithmic decrement In the neutral position. 

It is rather interesting to note that using Sisto's solution to the 
general e 
equation P 

uation (1) the critical flutter velocity will be given by the same 
see Appendix II), though the constant Kf will have a different 

physical significance. 

From a nractical point of view, therefore, equation (9) can be used 
with some cotddence to predict the critical flutter velocity irrespective 
of the fundamental theory used in derlvlng it, so long as the constant Kf is 
detennU?.ed directly from the experimental results. One might expect that, 
for any blade, Kf dll be a function of wcidence and, on phase lag theory, 
a function of the freqwncy parameter. 

2.3 Application of theory to experimental investieration 

Of the quantities m equation (y), the constant Kf and the damping, 
as expressed by the decrement 6,, arc the most tiff1cul.t to measure. The 
best test of equation (9) 1s therefore one m which both of these quantities 
are kept constant. This 1s most easdy done by concentrating the tests on 
a given blade. The series of tests described In the next section vrere 
carried out by thinnzng down one typical compressor blade, so meeting the 
conditlone outlined above. The blade natural frequency --dll be given by 

fb = k' t/h2 . . . . . . . . . . . . . . (IO) 

\Ve then have, emce the blade material density and air density are constant, 
and also the blade height in these tests. 

t 2 vf = k” I; 0 = kt2 . . . . . . . . . . (11) 

where k is some constant. 

3.0 Experimental investigation 

3.1 Equipnent 

The tests mere carried out in the very smple cascade tunnel shown in 
Figure 4. Air was supplied under pressure to the 2 in. sqwre vmrkmng 
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section via a 20 : 1 contraction. It was then discharged to atmosphere 
through the cascade. The cascade was mounted in a turntable carried in 
the floor of the tunnel so allowing the incidence to be varied. The top 
of the tunnel was made of perspex so that any vibration could be obsermd 
directly. 

No traversing gear was used. The only instrumentation consisted 
of's pitot situated in the inlet section and wall static tapping situated , 
just ahead of the cascade. 

The cascade was made up of blades having the following spccifi- 
cation:- 

Base Profile 
Camber Line 
Csmber Angle 
Stagger Angle 
Chord 

Height 
Aspect Ratio 

Pitch/Chord Ratio 

C.l 
Circular Arc 

45O 
-170 
0.667 m. 

2.0 m. 

3.0 
0.80 

The blades of the cascade had a maxnnum thickness of 13 per cent 
chord. However the central blade, wh.wh was the only one under test was 
thinned dew succcss~vely from 9.7 per cent to 6.6 per cent chord. Vibra- 
tlon VA8 recorded on the central blade only, and for the majority of the 
testing the remaining blades were not vibrated. No measurement of blade 
material and root dsm@g -rias taken at the time of the tests. 

3.2 zest technique 

It should be pointed out that these tests 'iere carried out some years 
ago, before the more refined technique s 
9 and IO for example) were developed. 

now being used (soe Rcfercnces 
Nevertheless the data obtained is 

reliable Inthin the limits of the test procedure, and is considered adequate 
for the analysis in hand. 

Testing consisted of setting the cascade at a fixed incidence. The 
airspeed wax then very gradually increased until flutter was observed visu- 
ally. The pitot and static pressures were noted and the test repeated at 
other incidenccs, usually in lo steps. The critical flutter velocity could 
then be calculated. Having witnessed both these tests and those carried 
out under modern conditions the author would estimate that the critical 
flutter velocity obtained in this manner corresponds to an alternating 
flutter stress of about+ 10 tons/in'. 

Tests were first carried out on a blade 0.064 in. maxisnnn thxkncss. 
The blade thickness was then reduced by hand in steps of about 0.003 in. 
dew to 0.045 in. This blade broke under test. All the tests reported 
in this note were carried out on the ssme blade so that the root damping 
may be supposed to be constant. 



3.3 Test results 

The test results have been presented graphically in Figures 5 and 6, 
where the crstical flutter Each number and the critical flutter velocity, 
respectively, have been plotted against incidence. Roth torsional and 
flexural vibration was encountered on these blades, though the test notes 
indicate that the flcxural form usually appeared first with increasing Mach 
number. The flutter appeared to be more uniform than present records in&- 
cate, but this may well have been an optical illusion, Some choking flutter 
was observed at high liiach tnmlber and negative incidences, but has not been 
recorded in this note. The curves plotted represent the stalling flutter 
boundary zone, aLad define the incidence and velocity limitations. 

4.0 Discussion of results and further work 

The critical. flutter velocity has been plotted against section thick- 
ness on a logarithmic basis for a number of representatrve incidences in 
Figures 7 and 8. The best straight line through the test points :has been 
drawn in and also, for comparison, the curve given by the expression 

\ V, = k tZ . . . . . . . . . . . . (11) 

Assuming that the test results can be represented by the equation 

Vf = k t" . . . . . . . . . . . . (12) 

values of "ill' have been determined and plotted against incidence in Figure 9. 
It will be seen that agreement between the experimental and theoretical 
values is good, though the test results would show a variation of "n" vnth 
incrdence. Referring back to equation (9) it is difficult to see which of 
the factors is dependent on 'It" in a manner which varies with incidence. All 
can be eliminated except Kf. Rxamination of isolated acrofcil data suggests 
that the blade maximum thickness has little effect on the aerodynamic beha- 
viour above stall (see Reference 11 for example), i.e. one would expect Xf 
to be constant at any given incidence. However the dcparturc of "n" from 
its theoretical value is so small that the theoretical curve could be used 
in most cases with sufficient practical accuracy. 

On the evidence of the theoretical and experimental results quoted 
in this Report It would appear that ostunation of the critacal flutter velo- 
city is emenable to very simple theoretical treatment. It is true that only 
Cm of the parameters have been varied. The general equation for the criti- 
cal flutter velocity deduced in Section 2.2 is 

Vf = Kf t f 6, =/p . . . . . . . . (9) 

and before any reliance can be put in this equation further wrk using re- 
fined techniques is necessary. An investrS:ation into the effect of air 
density 1s already well in hand, and will be reported later. An additional 
examination of the frequency effect, by change of blade height, is also in 
hand. In all this work a maJor unknown factor arises from changes in the 
damping. Although damping can bc measured it is doubtful if sufficient 
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accuracy is being obtained by present techniques. More generally, the 
hope expressed in the introduction that the dmpmg would only occur in the 
equation (9) as a second order tern has not been fulfilled by the theoreti- 
cal investigation. The inability to pred&ct the damprug of blades without 
resort to test seems an msu erable obstacle in the way of a general praoti- 
cal application of equation P 9). 

5.0 Conclusions 

A theoretical investigation has been ma& into the factors gover- 
ning the critical flutter velocity. On the basis of the hypothesis 
advanced, the vuriation of the critical flutter velocity with respect to 
blade thickness has been deduced and compared :vlth test results. Agree- 
ment is good, but further work is necessary before the hypothesis can be 
accepted "In toto". It would appear that the blade damping is a major 
prmeter in detemining the critical flutter velocity, and thas entails a 
severe px'actmal handicap in generally applymg the theoretical formula. 
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APFEZNDIXI 

Derihtwn of Equation (8) 

It 1s known from the solution of the general equation (1) given by 
Den Hartog that, with typical values of the constants In equations (2) and 
(3) the motion of a blade m stalled flutter will be appmxunately sx-woidd. 
Thx xs, of course, confxmed by experlmentsl evidence. We can thus write 

x = x0 Sin wt . . . . . . . . . . . . . . . (13) 

and ;r = x0 w cos wt . . . . . . . . . . . . . . (14) 

&em x0 is the mexinum emplitucle, and may be a slowly varying function of 
time. 

The aeroc?ynsmic force function F (x 1; y) can then be written 

F(xjrjI) = iFk= x,wCoswt . F;( . . . . . . . . (15) 

where F;C is a constant depending only on the aemdymmic conditions. Assuming 
that the acmdynam~c force on a blade during vibration 1s the semc as that on 
a static blade at the instantaneous angle of attack, it can be shown (Ref- 
erences 7 and IO) that 

F;, = E Cos(a, - t;) 

a+ VI 
. . . . . . . . . . (16) 

where the ter!n*contaming 
aF/ 

a?dn has beon neglected when considermg stalling 
flutter 

. 
. . F;; = 3P, c v a%a co s (CL ,-X) . . . . . . (17) 

A value for F (x ? y) may be obtained by substituting for Fj; into equation 
(15), but a closer appmxhnation to the physical phenomenon mey be obtained 
by introducing an arbitrary phssc lag, q, of the aemdynsmic forces behlnd 
the m&ion of the blade. Hence we get 

F(xG%) = x,wCos(wt-9) .$pV, c a%a cos( a, - E) (18) 

the work done per cycle by this force wiL1 be 
I-w, 

\ 

0 
nw = F(xk:);dt . . . . . . . . (19) 

\.!O 
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Now the kinetic energy absorbed m &pin@; per cycle is given by 

AW q 2WS . . . . . . . . . . 

where x = * iii x02 l$ . . . . . . . . 

m being the mass of the blade per unit length. 

Hence A W = m xo2 i& 6 . . . . . . . . 

Hence flutter till occur when 

ac, %.V, cxo*o- F" 
cos( a, - 5) cos 'p > m 

aa 

or the critical flutter velocity vdl be given by 

Vf = m w 6, 

ni2 P = aCF/aa Coda, 7 t;) Cos 'p 

writmg m = kcto . . . . . . . . 

anaw = 2xf . . . . . . . . . . 

andKp = lek 
** a%/aa co+ - t;) cos tp 

we get Vf = Kf t f 6, “/p . . . . . . 

. . . . 

. . . . 

. . . . 

xo2 d 6 

. . 

. . . . 

. . . . 

. . . . 

. . . . 

. . 

. . 

. . 

. . 

. . 

. . 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

\ 

. . (26) 

. . (27) 

. . ( 28) 

. . (29) 
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APPENDIX II 

&rivation of Squation (8) from S&to's solution of Eouation I 

In the notation adopted ln this Report, Slsto gives the follovring 
expression for the eqlulibnum flutter amplitudes 

The critical flutter velocity will then be given by x0 = o 

Or writmg as before 

m = kctu . . 

and w = 2xf . . 

we get 
vf = 8 k t f 6 “ip 

avaa 

. E 

. . 

. . 

. . 

. . 

. . 

.  .  

.  .  .  .  

.  .  . *  

.  .  .  .  

‘. . ,  

.  .  .  .  

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

(30) 

(31) 

( 26) 

(27) 

(32) 

(33) 

(34.1 
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