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Summary.--The work dealt with in this report  is of an exploratory nature primarily intended to provide some 
understanding of the flutter characteristics of a Hill aero-isoclinic wing. Essentially, this is a swept-back wing 
elastically designed so tha t  the lifting loads do not affect the aerodynamic incidence. The aero-isoclinic proper ty  
is dependent on the change of incidence due to torsion of the wing being neutralised by  tha t  produced by  wing 
bending. The simple aero-isoclinic system used in the tests consisted of a rigid aerodynamic lifting surface having 
the two essential freedoms, rotation about a swept-back axis, and rotat ion about a perpendicular axis at the root. 
Flut ter  critical speeds and frequencies were measured over a range of the ratio of the bending and torsion frequencies ; 
the results show that  the aero-isoclinic condition is not sufficient to prevent  flutter, and further that  the critical 
speed for flutter may  be low. As usual, forward mass-loading of the wing raises the critical speed. 

A subsidiary par t  of the report deals with a method of flutter-speed calculation in which the aerodynamic te rms 
are restricted to static derivatives only. No damping terms whatever  are present in the equations of motion. 
The solution yields a boundary between constant ampli tude and growing oscillations, which is regarded as the f lut ter  
critical condition. The method gives critical flutter speeds tha t  agree surprisingly well with the experiments. 

1. Introduction.--The idea of an aero-isoclinic wing was put forward by G. T. R. HillL Briefly, 
it is a swept-back wing elastically designed so that  the normal lifting loads do not affect the 
aerodynamic incidence. This aero-isoclinic property is obtained by adjustment of the flexural 
and torsional stiffnesses, their distributions, and the position of the locus of flexurM centres 
so that  the change of incidence produced by the torsion of the wing under air load is neutralised 
by that  due to win.g bending. 

I t  was suggested by Hill that  this type of wing would have an infinite divergence speed, and 
desirable characteristics with regard to flutter. A paper by Williams ~ primarily drawing 
at tention to the possibility of a dynamic type of divergence, contained predictions of growing 
oscillations, and these results suggested that  the flutter properties of an aero-isoclinic wing 
might be no better, or even worse, than those of a more conventional design. The simple method 
on which these predictions were based was however subject to uncertainty, since the sole 
aerodynamic derivatives involved referred to the static case. 

The experiments of the present report were undertaken part ly to gain some general knowledge 
of the flutter characteristics of an aero-isochnic wing system, and part ly to put  to test the 
method on which tile calculations of Williams were based. The model used was a practical 
interpretation of the simple aero-isoclinic system theoretically treated by Williams. I t  

* Published with the permission of the Director, National Physical Laboratory. 
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consisted of a rigid aerodynamic surface having the two essential freedoms, rotation about a 
swept-back axis, and rotation about a perpendicular axis at the root, these two rotations 
representing to a limited extent the twisting and bending of an actual wing. The two freedoms 
were spring-constrained and the stiffness ratio was adjusted to satisfy the isoclinic condition. 

The results are not intended for quanti tat ive application to a practical isoclinic wing, but  
rather to provide early experimental evidence to assist in the understanding of the problem. 

2. List of  Symbols Used 

$ Rotation about OX t see Fig. 1 
0 Rotation about O Y  } 

Aerodynamic incidence 

I~ Moment of inertia about OX 

I0 Moment of inertia about O Y 

P Product of inertia about OX, O Y  

C~ Angular stiffness about OX 

Co Angular stiffness about O Y  

M~ = k,V%: Aerodynamic moment about OX 

Mo = koV~c~ Aerodynamic moment about O Y  

f ,  = p~/2 ~ Uncoupled frequency of oscillation about OX 

fo = po/2 ~ Uncoupled frequency of oscillation about O Y  

fc = p J2 ~ Flut ter  frequency 

r = / g f o  

q = P/I~ 

s = CJCo 

V Air speed 

VD Divergence speed with freedom 4 absent 

n = V / V ~  

PART I 

Mainly  Experimental 

3. Description of the Sy s t em . - -The  basic system is shown in Fig. 1. A rigid 45-deg swept-back 
wing ABCD, arranged close to a wall WW of the wind tunnel (National Physical Laboratory 
4-ft No. 1) is able to rotate about an axis O Y  which lies at tile mid-chord position. Axis O Y  
can itself rotate about the perpendicular axis OX. The two degrees of freedom 0 and $, which 
to some extent may be regarded as representing torsion and flexure respectively, are spring- 
constrained without the introduction of a cross-stiffness. A photograph (Fig. 2) shows the 
apparatus set up away from the tunnel to illustrate the details. Tile wing was a portion of a 
non-swept rectangular aerofoil with a symmetrical profile, and having previously been used for 
derivative measurements it was conveniently mass-balanced about a mid-chord axis. The 
original aerofoil was modified to a swept-back wing by  simply cutting off the ends at 45 deg. A 
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shaft rigidly clamped to the wing and projecting through the tunnel wall was supported by two 
ball-bearings to form the axis of rotation OY. These bearings were carried by a metal frame 
which was itself supported by two further ball-bearings rigidly attached to the tunnel wall and 
forming the second axis of rotation, OX. The metal frame was spring-constrained by 'earthed' 
springs S s , S s whose positions along the axis OY could be altered to provide a variation of C s , 
the angular stiffness about OX. Vertical rods R~ R~ attached to the main shaft were connected 
to the frame by springs So, So which provide Co, the angular stiffness about OY. Initially 
springs So So were chosen to give a convenient divergence speed Vv for the condition in which 
freedom ¢ was absent. Stiffness C s was then adjusted to make the system aero-isoclinic as 
explained in section 4. 

Attachment of bob-weights to the rods R 1 ,  R I  altered the ratio of the moments of inertia 
Is/Io, and thus altered the ratio r of the two uncoupled natural frequencies of the system. Hori- 
zontal rods also attached to the main shaft carried bob-weights to alter the product of inertia 
of the system about axis OX, OY. A further horizontal arm R2 coutd be attached to the wing 
tip for a similar purpose. Since the stiffness Co was quite low, it would have been difficult to 
cancel out large unbalanced mass moments about axis OY by spring tensions, and conditions 
involving large products of inertia were obtained by two or more masses placed at different 
y positions and balanced about axis OY. 

A small concave mirror M, attached to the main shaft as close as possible to the intersection 
of the axes OX and OY, threw, by means of a small plane mirror close above, a beam of light 
on to a large vertical screen (not shown in photograph). Displacements 0 and ¢ of the system 
were then given respectively as vertical and horizontal displacements of the light spot. 

No at tempt was made to obtain moments of inertia, I s Io, consistent with the wing density 
of a practical wing. The inertias were in fact very large in comparison with the size of the 
wing, and a rough comparison of the inertia properties of the system with those of a practical 
wing may be made from the following consideration. A homogeneous wing of the same shape 
and size as the model, but with a wing density* ~ = 1.0 lb/cu ft would have a moment  of 
inertia I s of 0- 15 slugs ft -~ , which is approximately 0.1 of the value applicable to the model. 

4. The Aero-isocli~ic Co~dition.--For small displacements of the system, the incidence of the 
wing may be written, 

c~= 0cos¢~ + ¢ s i n  

= (0 + ¢)/,V/2, since/3 = 45 deg. 

It  was convenient for the experiments to define the aero-isoclinic condition as follows. If the 
equilibrium position of the system in still air is (¢0, 00) and the corresponding equilibrium position 
at an air speed V is (¢v, 0v), then the stiffness ratio CJCo is correctly adjusted to make the system 
aero-isoclinic when 

¢o+  0 o = ¢ v +  0v. 

In the experiment ¢ and 0 were directly observed as horizontal and vertical displacements of 
a spot of light on the screen, and the aero-isoclinic condition would have been satisfied when, 
with any alteration of air speed, the spot travelled along a line at 45 deg to the horizontal. 

* ' W i n g  dens i ty '  is def ined as follows 

a~ = wing mass / (wing a rea  × mean  chord).  
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It was found that  (C~/Co),., the stiffness ratio required to satisfy the aero-isoclinic condition, 
depended both on the air speed and on the values of ~b and 0. The aerofoil section of the wing 
had its maximum thickness close to the mid-chord position ; this fact suggested that  the depend- 
ence on air speed might be due to a chordwise movement  of a separation of a laminar boundary 
layer resulting in a change of aerodynamic centre. Some improvement was in fact effected by 
attaching 'transition wires' at the mid-chord position and these were retained throughout the 
oscillatory tests. 

Although a considerable amount of time was spent in investigating the dependence of the 
ratio (C,/Co)~ on the values of $ and 0, no definite explanation could be found and it seems that  
the phenomenon can only be attributed to some asymmetry of the model or the airstream. 

At an air speed of 30 It sec (C~/C0)i appeared to be constant for displacements for which 
> 2.0 deg approximately and also constant for those for which c~ < --2- 0 deg and the following 

values of the aero-isoclinic stiffness ratio were obtained: 

> 2.0 deg 10-6 
< - - 2 - 0  deg 5 .0 .  

The stiffness ratio was finally adjusted to the value 7.77 (roughly the mean of the above 
values) to give an approximation to an aero-isoclinic condition. In view of the qualitative 
nature of the experiments this approximation was considered to be justified. 

5. Preliminary Measurements.--The product of inertia of the system was initially brought 
to zero by adjustment of the masses on the horizontal arms. The experimental test for this 
condition was that  no 0 motion should occur when an impulse (a jerk by hand) was given to the 
$ f r eedom;  this method although very simple provided a sensitive method of adjusting the 
position of the masses. The product of inertia for any subsequent condition was estimated 
from the additional masses and their positions. Initially, and after each addition of masses to 
rods R1, R1, care was taken to see that  no gravitational stiffness was present by balancing the 
system about OY when springs So So were removed. 

Angular stiffnesses C, and Co were measured by locking each freedom in turn with straining 
wires and by applying moments and measuring the deflections of the light spot on the screen. 

The uncoupled natural frequencies f , ,  fo were measured by timing 10 free oscillations with the 
appropriate freedom locked. Quoted values of the inertias I ,  and Io were calculated from 
frequencies and stiffnesses. 

6. Critical Speed and Frequency Measurements.--The divergence speed, VD, appropriate to 
absent was determined by locking the $ freedom as explained above, and by raising the air 
speed until the system was in neutral equilibrium for small values of 0. This condition occurred 
at 45.4 ft/sec, and was quite critical to air speed. 

Flutter critical speeds were measured by the usual method of finding the lowest air speed at 
which an oscillation of reasonable amplitude would be maintained. The flutter frequencies 
were low enough to allow stop-watch timing. 

7. Experimental Results.--The flutter experiments consisted of two series of tests. The main 
series referred to the system with zero product of inertia, and flutter critical speeds and frequencies 
were measured for a range of values of Io whilst I~ maintained approximately the same value. 
The second series referred to a product of inertia t9 = _ 0-144 slugs It 2. (corresponding to a wing 
with forward mass-loading), and critical speeds and frequencies were again measured for a range 
of values of Io. 
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The complete experimental results are set out in Tables 1 and 2 which also give the values of 
the derived non-dimensional parameters r, ~ and q used by Williams. Fig. 3 gives the experi- 
mental  results as graphs of ~¢~ and f~/~/(fof~) plotted against r ,  and affords a comparison with 
calculated results. 

With zero product of inertia the normal modes of vibration in still air consisted of one pure 
~b motion and one pure 0 motion (still-air aerodynamic forces being neglected). With a finite 
product of inertia, the normal modes consisted of coupled ~ and 0 motion, and a possible normal 
mode is defined by 

+ 0 = const 

and since the incidence is constant during the oscillation, this mode may appropriately be termed 
isoclinic. In Part II an analysis leads to the conclusion that  as the lower normal mode tends 
to become isoclinic, the flutter speed tends to become infinite. 

Although no precise measurements of the normal modes were made, it was noticed during 
the experiments with a negative product of inertia that  the lowest free oscillation in still air 
approximated to an isoclinic mode for all the chosen values of r, and that  this approximation 
became even closer as the critical speed increased. 

• During the tests with a negative product of inertia, the air speed was raised above the 
divergence speed VD and the peculiar characteristics of the system under these conditions is 
worthy of note. If the system was touched, or if during an oscillation it happened to hit against 
the amplitude stops, divergence was likely to occur since the aero-isoclinic property had been 
upset. 

8. Calculated Results.--A systematic series of calculations was carried out using the theoretical 
method of Williams ~, which together with some amplification is dealt with in Part II. To 
provide a general picture, the smaller values of ~ given by equation (12) of Part II  were computed 
for a range of 11 for q = --0-075, --0.05,  --0-01, 0, and +0.075.  These results are shown in 
Fig. 4. 

For comparison with the experimental results a further set of calculations was made referring 
to q = - -0 .06  which is the mean of the values of q used in the experiments with a negative 
product of inertia. Theoretical values of the quanti ty fc/~/(fJo) were also computed for q ---- 0,  
--0.06.  

The calculated results necessary for a comparison with experiment are shown in Fig. 3. 

9. Discussio~ of the Results.--The agreement between the calculated and experimental results 
is sufficiently close to allow the general forms of both sets of results to be discussed at the same 
time. 

The results clearly show that  the aero-isoclinic property ' is not a sufficient condition for the 
elimination of flutter. No dynamic divergences were encountered and theory suggests that  
such an instability can never occur at a speed below the flutter speed. The flutter-speed curve 
of Fig. 3 shows that  the critical speed decreases as the two natural frequencies of the system 
approach one another, and an increase in the frequency ratio f~/fo to a value above unity leads 
to a steep increase in the critical speed. As with conventional wings mass-loading forward of 
the flexural axis raises the critical speed. 

5 



The high equivalent wing density of the model is one of the factors that  must be considered 
before any use.is made of the experimental results to assist in the understanding of the flutter 
problem of a practical aero-isoclinic wing. As far as is known, there is no definite experimental 
evidence on the effect of a large increase in wing density on the flutter critical speed. Calcula- 
tions made by Duncan, Lyon and Griffith :~' ~ for a normal cantilever wing show that  the flutter 
critical speed decreases with an increase of wing density, and that  it tends to an asymptotic 
value when the wing density becomes very large (i.e., when ~ much exceeds 1-0). This 
conclusion may however be open to some suspicion since the calculations were based on a set of 
constant derivative coefficients that  may not be sufficiently accurate for dealing with cases 
of high wing density where the frequency parameter co is likely to be low. However even in 
spite of lack of evidence, it is suggested that  the present experimental results are qualitatively the 
same as those which would have been obtained with a lighter model. A justification for this 
view is provided by the good qualitative agreement that  exists between the experimental results 
and those obtained theoretically by Houbolt ~ for a system having a practical value for the 
wing density. 

10. Comparison between Experiment and Calculation.--The reason for the apparently surprising 
agreement between experiment and a theory involving the drastic assumption of zero aerodyn- 
amic damping probably depends to a large extent on the high equivalent wing density and the 
low frequency parameter which this entails. Now in general as the frequency parameter tends 
to zero, the aerodynamic stiffnesses tend to their static values, and the aerodynamic damping 
forces tend to zero, and thus for low values of the frequency parameter it is not unreasonable 
that  calculations neglecting damping and using static stiffnesses should give results in agreement 
with experiment. I t  has already been suggested that  the present experimental results are 
qualitatively the same as those applicable to a system with a practical wing density. In view 
of the agreement between the experimental and calculated results, the above suggestion leads 
to the possibility that  the method of calculation in which damping is neglected may be able to 
provide qualitative information on other flutter problems. 

11. Summary of Conclusions.--(a) The experiments show that  the aero-isoclinic condition 
is not sufficient to prevent flutter, and further that  the critical speed may be low 

(b) The flutter critical speed can be increased by forward mass-loading of the wing 

(c) There is no indication, that  dynamic divergence will occur at a speed below the flutter 
critical speed 

(d) The method of flutter-speed calculation in which the sole aerodynamic terms are static 
stiffness derivatives appears to give reasonable results for a system whose wing density is high. 

PART II  

An Analysis of the System 

12. In an Air Stream.---The behaviour of the experimental system is investigated by the 
method of Williams 2. 

The assumption is made that  the aerodynamic moments M, and Mo about axes OX and OY 
respectively are proportional to the instantaneous incidence of the wing and independent of the 
time rates of change of ~ and 0, thus 

Ms = GV"-c,. = GV2(o + ¢ ) / x / 2  

mo = koV '  =  oV2(o + ¢ ) / V 2 .  
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The  equations of motion referred to axes O X  and O Y are then, 

I+~; + C# + PO = M+ = k+V~(O + ¢)/~/2 . . . . . . . .  (1) 

zoo + CoO + p~  = Mo = kov"(o + 4 ) / ~ / 2  . . . . . . . . .  (2) 

Let the divergence speed for the system with freedom ¢ absent be V . ,  then 

co = ~ o v # / ~ / 2  . . . . . . . . . . . . .  (3) 

The aero-isoclinic condit ion is satisfied when there is no change of incidence with air speed. 
That  is 

o = ~ / 2 ( ~  ~) = ~ o + d ¢  = ( ,L/Co + L / c + ) v " ~ , ~  

- -  k + / ' k o  = C + , / C o  . . . . . . . . . . .  (4) o r  

By writing, 
V / V ~  = ~ 

p+ = ( C + / L ) v  ~ 

po = (Co~L)"" 

= b+ /Po  

q = P / I +  

s = C+/Co 

and by using equations (3) and (4), the equations of mot ion become, 

~; + (1 + ~3/'po~¢ + q0 + ~r~po- 'o  = o . .  

(qs/r~)(~ - n"p;-¢ + o + (1 - ~+")po~0 = o .  . .  

The solutions are of the form 
~ 4o eat 

0 = 0o e at 

whe re  2 is given by the auxiliary equat ion 

which yields 

A,~ 4 q- B 2  ~ q- C = 0 

where, 

- - B  --4- . v / ( B  2 - -  4 A C )  

2A 

A = (1 - - q ~ s / r  ~) . . . . . . . .  

B = P;E(1 - n ~) + r"(1 + n 2) - -  n')q(s - -  1)] 

C ~ ~/2po4 . 
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Since ( I ¢ I o  - -  p2)  <K O, A can be shown to be positive, whilst C is necessarily positive, and thus 
the roots 4 2 of equation (7) will be both real and positive, or both real and negative or a complex 
pair. When ~2 and X are written in the general form 

U = a + ib  

2 = c  + i d  

the conditions under which the various types of root exist may be seen from the following table 
in which the suffixed symbols represent positive quantities: 

B 

ko 
= >0 
o$ 

o 

>0 

<0 

<0 

B 2 - -  4 A C  

>0 

<0 

<0 

>0 

2 ° 

-- 6~ I 

- -  al ~K ib l  

al =~_ ibl 

+ a2 

- - ~  ~ idl 

. . . .  -~  id2 

Cl ~ idl 

- -  cl ~2 idl 

! cl -}- idl  

1--Cl ~K idl 

- -  - - " +  ~ Cl 

'>  ~ C2 

Physical interpretation 

two maintained 
oscillations 

one growing 
oscillation 

+ 

one decaying 
oscillation 

two divergences 
+ 

two subsidences 

The divergences referred to in the above table do not correspond to the usual static divergences 
which occur with a non-aero-isoclinic system when an aerodynamic stiffness neutralises an 
elastic stiffness. The present type may be termed dynamic divergences as suggested by Williams. 

The condition B 2 -- 4A C = 0 ,  B > 0 represents a change from stable oscillations to a growing 
oscillation, and this is regarded as the condition for incipient flutter. 

Substitution of the expressions for A, B and C in the condition 

B 2 - -  4 A  C : 0 

leads to the following expression for no, corresponding to the critical air speed: 

~ = (r ~ + 1) d- 2V[r"(1 --qZs/rZ)] 
(1 - + ¢ ( s  - 1) 

(12) ,  

where the smaller root refers to the change from stable oscillations to a growing oscillation 
(the flutter critical speed), and the larger root to a change from a growing oscillation to a diverg- 
ence (the critical speed for a dynamic divergence). The flutter speed is thus always less than 
the speed at which dynamic divergence occurs. 

Since B 2 - -  4 A C  = 0 at the flutter critical speed the. flutter frequency fo is from equa{ion (8) 
given by 

or L ----- (/0A)1/2/( 1 -- q2s/r2) '1~ . . . . . . . . .  (13} 
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For the part icular  case where the product  of inertia is zero (i.e., q = 0) the  critical speed 
boundar ies  are given by 

., 1 - - r  l + r  
~ c -  - -  o r  - - -  

l + r  1 - - r  

and r = 1 

whilst  the  f lutter  frequency is 

f ~  = ( f o A ) ,  ~ . 

Fig. 5 illustrates the stabil i ty of the  system as a graph of n plot ted against r for a typical  
condi t ion  q =/= 0, whilst Fig. 6 corresponds to the  part icular  case q ----- 0. 

I t  is seen tha t  the results of the above analysis do not  involve the posit ion of the axis O Y 
explicitly. The expressions for the critical speed parameter  no, and frequency given by equations 
(12) and (13) are in fact valid for any chordwise position of the axis O Y  provided tha t  the 
sys tem is aero-isoclinic ; it  has, however,  taci t ly been assumed tha t  OY lies behind  the aerodyn- 
amic centre of the  aerofoil section, so tha t  k0 is positive and thus a real divergence speed Vv 
exists. 

Then with this proviso, it is seen tha t  the system is stable for all values of n, when 

(1 - ,,~) + q(s  - 1) < o . . . . . . . . .  (14)  

13. I n  S t i l l  A i r . - - T h e  equations of mot ion  of the system in still air are, if all aerodynamic 
forces are neglected, 

The  solution is of the form 

L ~  + G ¢  + P0  = 0 t 
1, . • • 

P ~ + I 0 0 + c 0 0 = 0 )  
. . . . . . . .  (15)  

= # sin p t  

0 = O sin 15t 

and  no restriction is placed on the sign' of # and O. 
we have 

R - -  p p 2  _ Co - -  I o p  ~ 
C~ - -  I ~ p  2 p p 2  

where R = ~ / 0 ,  and defines the  mode of vibration. 

By  el iminating p from equations (16) the  following quadrat ic  in R is obtained,  

R "  + R ( I o / P  - - I ~ C o / P C ~ )  - -  Co/C~ = 0 

or R 2 + R ( r  ~ - -  1) /sq  - -  1/s  = 0 . . . . .  

9 
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Now for the system under consideration, the normal modes are completely defined by the 
positions of the nodal lines. Since the displacement z at any point x, y of the system is given 
by 

z = $ y  + Ox 

the equation of a nodal line is 

o r  

0 = z = ~ y  + Ox 

x/y  = - ¢ / o  = - R .  

Clearly since all the nodal lines pass through the origin 0 the nodal line, and thus the normal 
node, are sufficiently defined by the angle y that  the line makes with axis O Y  (see Fig. 7) where 

tan y = - - R .  

The normal mode defined by R, = --1 does not involve a change of incidence e ,  and may be 
described as an isoclinic mode. Now the condition that  one of the roots of equation (17) is 
--1 is 

(1 - -  r 2) + q(s  - - 1 )  = 0  

and this has been shown to be the condition that  the flutter speed shall tend to oo (see equation 
(14)). 

14. Correlation between Nodal  L ine  and F l u t t e r . - - I t  has been shown in section 12 that  there 
will be no real critical speed provided that  

(1 - ~ , ~ )  + q(s - 2) < 0 .  

This inequality yields the following condition for the product of inertia coefficient q for complete 
absence of flutter: 

r 2 - -  1 q < - -  
s - - 1  

Now the ranges of the roots Rt and Re of equation (17) for the range* 

are, when s > 1, given as follows: 

(a) W h e n r < l  

(b) W h e n r >  1 

r 2 - -  1 

s ~  > q > - -  °o 

- -  1/'V/s > R1 > - -  1 

1/Vs > R~ > 1/s 

"V/s > 1/R1 > - -  1 

1,/s > R2 > - -  1/X/s • 

* T h e  sm a l l e r  l imi t  of q is in p r a c t i c e  - - r / % / s .  
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From these results Figs. 7a and 7b have been plotted to show the regions for the nodal lines 
for which theoretically no finite flutter speed exists. 
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TABLE 1 

Exper imenta l  Results  w i th  Product  of  Inert ia  Zero 

b 

c/sec 

1.316 
1" 075 
O" 820 
O- 676 
O" 572 
O" 525 
O" 503 
0"488 
0-451 
0"459 

0"4425 

0.431 
0"4195 
0.414 
0"405 
0"400 
O" 396 
O- 3875 
O" 383 
O. 373 
O" 343 

c/sec 

0-417 
415 
412 

0 410 
0 405 
0 403 
0 402 
0 401 
0.396 
0,400 

O, 398 

O, 397 
O, 393 
O, 396 
O. 394 
0.394 
O. 394 
O. 393 
O. 392 
O. 390 
O. 385 

=- f~/fo 

0-317 
O. 386 
O. 503 
O. 607 
O. 708 
O. 768 
O. 799 
O. 823 
O- 87O 
O. 872 

O. 900 

0"921 
O" 939 
O" 956 
O" 972 
O' 984 
O" 995 
1 "015 
1" 022 
1" 047 
1"121 

fO 

slugs ft 2 

0 .016 
O- 025 
O- 043 
O. 063 
O" 087 
O. 104 
0.113 
O. 120 
O. 141 
O" 136 

O- 146 

O. 154 
O" 163 
O" 167 
O" 174 
O. 177 
O" 182 
O" 190 
O" 195 
0.206 
O. 243 

sb ~gs ft~ 

t-28 
i .29  
[ .31 
[- 32 
[ .36 
t .37  
1.38 
l "38 
1-42 
1 "39 

1 "40 

1 "41 
1 "44 
1 "42 
1 "43 
1 "43 
1 "43 
1 "44 
1 "45 

1"46 
.50 

slui 

0 
0 
0 
0 
0 
0 
0 

0 

o o 

0 
0 
0 
0 
0 
0 
0 
0 

Y~ 

ft '2 ft/sec 

31 "3 
29.05 
25.9  
21 .6  
17-8 
16.6 
14.9 
14.3 
11.6 
12.6 

11.2 

11.1 
9 .8  
9 .4  

10.3 
12.7 
i6" 3 
25.1 
27 .3  
36.5  
67.85 

~/SeC 

C ' 943 
( ,  806 
C • 662 
( • 583 
( .516 
( .  486 
( .  473 
( • 459 
( • 434 
( .442! 

( • 429 

O. 422 
0.414 
0.411 
0.402 
O' 402 
O" 396 
O. 382 
O" 3705 
0.351 

(1)¢ 

=_ 2nf~c/V~ 

0.091 
O. 098 
0.110 
O" 132 
O" 159 
O. 171 
O" 190 
O" 199 
O" 246 
O- 226 

O" 254 

O" 256 
O" 290 
0"304 
0"276 
0"223 
O" 175 
0.113 
O" 104 
O' 078 

n =-- V~/VD 

O" 690 
O" 640 
0"571 
O- 475 
O- 393 
O" 367 
O- 329 

0 " 3 1 4  
O. 254 
O- 278 

O. 247 

O. 244 
0-216 
O. 206 
O. 227 
0.281 
O. 359 
0.552 
0.601 
O. 804 
1. 495 

1-27 
1-21 
1.14 
1-11 
1 "07 
1 . 0 6  
1" 05 
1' 04 
1" 03 
1" 03 

1"02 

1 . 0 2  
1 . 0 2  
1 . 0 2  
1 "01 
1 . 0 1  
1.00 
0-98 
0 .96 
0 .92 
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fo 

c/sec 

0.575 
0.570 
0.520 
0"459 
0.429 
0.379 

c/sec 

~[ 307 
309 

O- 305 
~[302 

303 
O" 301 

r ~- f~/fo 

O" 534 
0"541 
O. 589 
O. 658 
O. 707 
O" 794 

I0 

slugs ft 2 

O- 087 
O- 088 
O" 106 
O" 136 
O" 156 
0"201 

slugs ft 2 

2 .36  
2" 34 
2-39 
2"44 
2 .42  
2 .40  

P 

slugs ft" 

- -  0 .  1 4 4  

- -  0 .  144 
- - 0 .  144 
- -  0 .  144 
- -  0 .  1 4 4  

- -  0 -  1 4 4  

Vc 

ft/sec 

51 "2 
50"5 
51 "4 
49"7 
54"6 

> 6 9 " 4  

f~ 

c/sec 

0.427 
0"415 
0"404 
O" 376 
O" 374 

gOc 
2rcf cc / V~ 

O. 056 
O. 023 
O- 022 
0.022 
0.019 

n ~_ V c / V D  

1"13 
1"11 
1.13 
1.10 
1 "20 

> 1.53 

fc/%/(fof¢) 

1.02 
0"99 
1 - 0 1  

1 . 0 1  

1.04 

- - 0 . 0 6 1  
- -  O. 062 
- -  O. 060 
- -  O- 059 
- -  O. 059 
- - 0 " 0 6 0  
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FIG. 6. The theoretical stability boundaries 
for q = 0. 

× 

I-o 

FIGTa. r < l .  

O 

Q 

¥ 

x 
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FIGS. 7a and 7b. Theoretical correlation between position of nodal line and possibility of flutter. The system is 
flutter free when nodal lines lie within shaded areas (s = 7.77). Values of x/y indicated against lines. 
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