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Summary—The laminar boundary-layer equation, for a linearly retarded velocity in the main stream, U =1 — }x
in reduced variables, has been solved numerically by working in finite intervals in x, with a correction for the finite
length of x-interval. The method was first tried out on the region near the forward stagnation point, where the results
could be checked from tables given by Howarth, and proved very satisfactory. The separation point has been
determined by two independent methods to be close to x = 0-959, in excellent agreement with Howarth’s value. The
nature of the singularity at the separation point is discussed.

1. Introduction.—The equations of the laminar boundary layer, in their usual form, are partial
differential equations in two variables, and though in a few special cases the variables can be
separated, this is not possible in general. A number of approximate methods, of various kinds,
have been developed for obtaining approximate solutions in more general cases. A survey and
critical discussion of methods then available was given by Howarth® in 1934, and other methods
have since been developed by Kdrman and Millikan®, Howarth® and others.

More recently, a rather general method for the numerical or mechancial solution of partial
differential equations with suitable forms of boundary conditions has been proposed and in-
vestigated by Hartree and Womersley®, and a test of this method on a simple form of the equation
of heat conduction was entirely satisfactory and showed that the method was manageable in
practice, and, in that case, would give results of quite good accuracy (five figures) without undue
Iabour in numerical work. The method, which is outlined in section 2 of the present report,
is also very suitable for the use of mechanical methods of integration such as the differential
analyser of Dr. Bush® %, if not such a high accuracy in the solution is required, and it has been
applied successfully to the solution of the equation ’

26 9% .
% 3T P

which arises in the theory of the thermal breakdown of dielectrics in alternating fields®, using the
differential analyser at Manchester University.

These successful trials of the method led to the hope that it could also be applied successtully
to the equations of the laminar boundary layer. This application is certainly a more ambitious
one than the previous ones attempted, as the equation is of a higher order and more elaborate,
and the range of integration is formally infinite in a direction normal to the boundary, whereas,
apart from a few experiments, previous applications had been concerned with a finite range of
integration in the corresponding variable. But the boundary conditions are of the form which
allows the application of the method, and the effective range of integration in practice did not
seem likely to be too large to be convenient.
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The solution of the boundary-layer equations depends on the pressure distribution over the
solid boundary, or the equivalent velocity distributiont in the main stream just outside the
boundary layer. It was proposed in the first instance to attempt the solution of the boundary-
layer equations by Hartree and Womersley’s method for two cases, namely for Schubauer’s
experimental pressure distribution®® for an ellipse of axial ratio 3 : 1, and for a linearly retarded
velocity in the main stream. For the former case it was proposed to use the differential analyser
for carrying out mechanically the integrations involved ; for the latter case it seemed desirable
to work to a greater nominal accuracy than that obtainable from the differential analyser, and

it was proposed to do the integration numerically. The present report is concerned primarily
with the latter work.

The case of a linearly-retarded velocity in the main stream has been examined by Karman
and Millikan®and by Howarth®. Karman and Millikan’s method gives separation at x* = 0-102
(in Howarth’s notation) whereas Pohlhausen’s method™ gives separation at x* — 0-156. Howarth
estimates the position of the separation point as between x* — 0-119 and 0-129 (Ref. 8, p. 555),
and probably close to #* = 0-120 (p. 564). It may be said at once that the results of the present
calculations entirely confirm this last result of Howarth, and in fact show that his result is correct
nearly to one further decimal; they indicate that the separation point is close to 8x* = 0-959.

The fact that for this case the pressure distribution is given by a formula, and so can be
evaluated and interpolated with certainty to any accuracy required, makes this case a satisfactory
one for comparative trials of different methods of obtaining approximate solutions of the
boundary-layer equations.  An experimentally observed pressure distribution, such as
Schubauer’s, has the disadvantage for this purpose that the observational material can be
analysed by different workers in slightly different ways in deducing, for example, the pressure-
gradient distribution or its derivative from the observed pressure. If the flow is very sensitive
to the pressure distribution, as it is in that case, it is very difficult to make sure to what extent
differences between the results of different approximations are real and how much they depend
on slightly different interpretations of the observational material.

This is why it seemed worth while carrying out the present calculations to a rather high nominal

accuracy, whereas a lower accuracy was regarded as adequate for the solution of the equations
with Schubauer’s pressure distribution.

Nov., 1948. The work covered in this and the succeeding Reports was carried out at the
University of Manchester, and reported to the Aeronautical Research Committee before the war.
It was approved for publication, but revision for publication was interrupted by the outbreak
of war. The methods used and the results obtained, however, still seem of sufficient interest
to put on record. Further, two other investigations (Refs. 14 and 15) in the theory of the
laminar boundary layer in the immediate neighbourhood of the separation point were suggested
directly by the results of this work, and other references have also been made to it'®,

2. Outline of the Method of Imtegration.—For equations in two independent variables, the
essential idea of Hartree and Womersley’s method is the replacement of the partial differential
equation by an approximately equivalent ordinary differential equation, by replacing derivatives
with respect to one of the variables by corresponding finite difference ratios, retaining the deriva-
tives with respect to the other variable to be integrated either mechanically or by some standard
process for the numerical integration of ordinary differential equations. In the present case,
as will be seen, derivatives parallel to the boundary are replaced by finite differences, and
integration is carried out along successive normals to the boundary at finite intervals, so that
from the distribution of velocity across one section of the boundary layer, the distribution of
velocity across another section at an interval downstream is calculated.

1t On the approximations of the boundary-layer theory, the pressure is uniform throughout any one section of the
boundary layer. The pressure is the quantity which explicitly appears in the equation of motion, but it is often
convenient to express it in terms of an * equivalent * velocity in the main stream.
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, Further, Richardson’s process of ¢ Z*-extrapolation "** can be used to estimate and correct
for the leading terms in the error made by working with finite intervals in one of the variables.
The use of this process involves covering the same range by two independent integrations, one
with intervals of half the length of those used in the other. It can be shown that under certain
conditions, satisfied in the case of the boundary-layer equation, the aggregate error is proportional
to the square of the interval length, so that from the difference between the results of these two
integrations, the error in each can be estimated and an appropriate correction applied. This
process of correction is of course not exact, and only deals with the leading terms in the error
involved by the use of finite intervals, but the residual error can usually be kept small by the
use of sufficiently small intervals. :

It is of interest to compare the kind of approximation made in the present method with those
made in some other methods for obtaining approximate solutions of the boundary-layer equations.

Pohlhausen’s' method and some others involve the assumption that the velocity distribution
in the boundary layer at any one section is given to an adequate approximation by a member
of a one-parameter set of functions. In Pohlhausen’s method the appropriate member of the
set, at each section, is selected by use of the momentum-integral equation ; the separate solutions
represent the velocity distribution in the form of a quartic in the distance normal to the boundary,
which does not seem a satisfactory form for a distribution which must tend asymptotically to
that in the main stream.

Howarth’s method for a general pressure distribution (Ref. 8, Part II), also involves the
assumption that the velocity profile at each section can be matched exactly by a member of a
one-parameter set of functions, but in this case these functions represent the set of velocity
distributions through the boundary layer for some standard pressure distribution, namely that
corresponding to a linearly-retarded velocity distribution in the main stream.

Some of these approximations appear rather artificial and formal, and in many cases it is
difficult to assess the errors they are likely to introduce. In the present method the only
approximation is the replacement of a derivative by a finite difference ; this seems a straight-
forward approximation, and is one whose effect it is possible to assess quantitatively, and,
ideally, the errors it introduces can be made as small as required by taking small enough intervals.

3. The Boundary-layer Equation.—Since the work is done in terms of non-dimensional reduced
variables throughout, it is convenient to start from the boundary-layer equation in terms of
these variables.

The following notation will be used :(—

U,
l

v

a representative velocity -
a representative length
kinematic viscosity of fluid

of the system considered

R Uylv :
Ix distance measured along boundary (x = 0 at forward stagnation point)
({/RV*)y distance measured normal to boundary (v = 0 at boundary)
Uy tangential component of velocity
(Ug/RY®v normal component of velocity
U,U(x) velocity in main stream at distance x downstream
pUsp pressure [p(x) = p, — 1U(x)]*
(IrUy)*P  stream functiont.

* This relation between p and U depends on the approximations of the boundary-layer theory ; it is sometimes
convenient to express a pressure distribution in terms of the *“ equivalent ** velocity distribution given by this relation.

f It is convenient to distinguish between the solution of equation (1) which will be regarded as the  exact ”’ boundary
layer equation (in the sense that it is the equation for which a solution is required, not that it is an exact expression

of the physical situation) and that of the approximate equation by which it will later be replaced.

¥ will be used. for

the former, and y for the latter.

(90347)
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In the reduced variables x, vy, 4, U, ¥ so defined, the boundary layer equation is
oY oY o o dp + 8‘""}’

oy oxoy  dx 9yF (1)
au a*’?{f
~ UG+ 5 @)
and the reduced stream function ¥ is related to the reduced velocity components #, v by
o ov
The boundary conditions satisfied by ¥ are
o
=0, —§=Oaty=0, . .. .. .. - .. . (4)
o
@—+U()asy—+oo. . . .. e .- (5)

Since in the approximate treatment of this equation to be considered in this report, the x
derivatives are replaced by finite differences, while the y derivatives are retained, it is convenient
to use dashes to indicate y derivatives. Hence we write (1) in the form

117 ’ aT, p
V' :'Pa—x—- dx+ .. . . . . .. (6)

For reference later, we require the values of various orders of y derivatives of ¥ at y =0
in the absence of a singularity at the boundary. These will be indicated by a suffix 0, and can
most easily be derived by putting ¥ = ¥’ = 0 in the results of successive differentiation of (6)
with respect to y. The first few are found to be as follows:—

wy =2 (a)
P = 0 (b)
wp = wy 0 B ©
mzfﬁ v =22 | @
@l "
W = 4wy d;': L N ) 0
P = 10(%)2%3—% 13u ;,‘f;;" ZZZ +97 d ‘Z‘;’ Zﬁ (8)
— ) .

-

Of these, (7) (a), (b), (d), (e) have been given by Goldstein*, and (c), (f) are implied by formulae
in the same papert.

* Ref. 3, formulae (3).
1 Ref. 3, formula (5), see also Howarth, Ref 8, formula (27), Prandtl, Ref. 11; the denominator of the last term
given by Howarth should read 8 (Cu/oy)s.
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The relations (7) (d), (e), (h) suggest that it would be an advantage to take the case of a uniform
pressure gradient, rather than a uniform velocity gradient in the main stream, as the standard
case for which to attempt to work out a rather accurate numerical solution. This procedure
was contemplated for other reasons before the work was started, but Howarth’s work had already
been done for a uniform velocity gradient, and in order that results of the present work should
be strictly comparable with those of Howarth’s, it was judged better to carry out the work for
the same case. It might have been still better to repeat Howarth’s work for a uniform retarding
pressure gradient*.

For convenience of comparison with Howarth’s results, we suppose the representative velocity
and length chosen so that, in the reduced variables,

U=1—13%. .. .. .o i a8

For a flat plate at zero incidence, this means that U, is taken as the velocity in the main stream
at the leading edge, and the typical length is the length in which the velocity in the main stream
decreases to ZU,. Then our reduced variable x is the quantity which Howarth writes 8x*, in
terms of which his expansion of the stream function is carried out. Howarth’s results give
separation at 8¢* = 0-96, so that the range of x over which integration is to be carried out is of
the order of unity, which is convenient on numerical grounds.

4. Approximate Form of the Boundary-layer Equation.—As already outlined in section 2, the
process used in this work for obtaining an approximation to the solution of a partial differential
equation in two variables depends essentially on replacing the derivatives with respect to one
of the variables by finite differences.

Since the boundary conditions to be satisfied are at x = 0 and at both ends of the range of
integration in y, the x derivative is the one which it is appropriate to replace by a finite difference
coefficient, while leaving the y derivatives as such, to be integrated by numerical or mechanical
means.

We will indicate by a small letter  the solution of the approximate equation by which the
exact equation (6) is replaced. For the x interval from x, to x,, values of y etc. at x, and x, will
be indicated by suffices 1 and 2 respectively. The equation satisfied by v is obtained by replacing
% derivatives by corresponding ratios of finite differences, e.g., o%/0x by (. — v1)/(%: — %),
and by replacing other quantities by the arithmetic mean of their values at the beginning and
end of the interval. Thus (6) is replaced by :

!

| F(ve" +9") =% (w2 + 1) H — % (w2’ + 97 H +P, 9
where P takes the place of dp/dx.

The appropriate expression to take for P,' in general, gave rise to an unexpected difficulty.
At first sight the obvious replacement appears to be
__P2_P1___ U22~U12.
P_x—————z__xl_——%—-——“z_xl . . .. .. (10

but, since # is a given function of %, so that $, does not involve the unknown v,, there would be
no difficulty in using the alternative :

=33 ()] .. .. . L L L

" the order of the error is the same as for (10).

T For U = by2/(1 — 2x*) (in Howarth’s notation) which gives the same pressure and pressure gradient at x = 0 as
in the case considered by Howarth, the differences from Howarth’s work are that the term — % in equation (7) of
Howarth’s paper is omitted, and the conditions (14) on f,, fy . . . at infinity are replaced by fj = — 1/25, fj = 1/29,
f[{=—5/21% ... ‘
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When the pressure is a polynomial of degree not higher than the second in #, and only then,
the two approximations for P are identical. Thus, for example, no discrimination between these
two expressions for P is necessary for the calculations with which this report is primarily con-
cerned, in which U is linear, and so # quadratic, in x ; but the point may, and did, arise in a rather

acute form when calculations are carried out for empirical pressure distributions such, for example,
as Schubauer’s*. ‘

It would seem desirable to ensure, if possible, that the approximate solution should have the
right behaviour at both ends of the range of y integration; by this means it might be hoped
that the correction for finite x-interval length would be kept nearly as small as possible.

For y = 0, (9) becomes
3 (v +9") =P,

and if " is to satisfy the same condition as ¥"’, namely v, = dp/dx (cf. (7a)), clearly the
expression (11) is the appropriate one to use for 2. On the other hand for y—w, we would
require ¢”"* and v’ to tend to 0, when (9) becomes

0=30v)* — ()Yl —m) + P,

and then expression (10) is the appropriate one to use.

14

This establishes definitely the appropriate expression to be taken at each end of the range of
¥ integration, and since in general these will give different values of P, it is necessary to have
some rule for interpolating between them for intermediate values of y. It would seem that the
tangential velocity, or its square, might be a suitable variable in terms of which to interpolate
between the extreme values of P, since it provides a measure of the extent to which the flow
is different from that at the boundary or at infinity. Interpolation between the extreme values

of P, linearly in ', would make 8P/dy # 0 at y = 0, whereas on differentiating (9) and putting
py=9 =0aty=0,

. : oP
(08 + 9 = (55), -

Hence, in order that % should be as good an approximation as possible to ¥, we require the

left-hand side to be zero (cf. (7b)). This condition is satisfied by interpolating between the
extreme values of P, linearly in ;%1 so that

P = P, + (y;/U)* 4P, - . .. . .. .. .. (12)
where P, is given by (11) and 4P is the difference between the values of P given by (10) and (11).

The value of 4P is usually small, and the exact way in which the interpolation between the
extreme values of P is carried out is rather a refinement. The above argument is not conclusive,
but it shows what to avoid, and on the basis of it the substitution (11) has been used when 4P
was appreciable. A test on a rather large x-interval, for which 4P was nearly 15 per cent. of
P,, for Schubauer’s pressure distribution, gave very satisfactory results (see R. and M. 2427).

It is interesting to put y = 0 in the results of differentiating (9) successively, and to compare
the results with the relations (7) to be satisfied with the derivatives of the exact solution ¥ at

* The work leading to the analytical results of this section was stimulated largely by difficulties encountered in the

work on Schubauer’s observed pressure distribution, but it is convenient to summarise it here, as some of the results
are relevant in connection with the present work.

T Possibly linear interpolation in (%} + ;)% would be better, but v! is known before the integration is started while
v is not, Since the variation of P is usually small, this method of interpolation is probably adequate.
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the origin. It will be assumed that P is given by (12), and also that v, satisfies the conditions (7)
so that, for example, from (§” 4 »{*), = 0 it follows that also (p§? — 9{), = 0. Then

(v + 91")o = 2P, (a)
(¥§ + )y =0 (b)
IZAY _— 1\ . aZP
(v + )0 = (2 362 — (x"i‘ Jo + 2 <"ay—2 0 (©)
L (" — v o (P |
(v1) (1) _ ’ rr . .
(‘Pz -+ i )o = 2(1P2 -+ i )0 % _‘_—xl -+ 2(—‘ay3 . (d) [ - (13)
. 2[(92")® — (»i")%o otP
(vi (vit — .
(™ -+ i) = Xy — %y + 2(8y4 o (e)
(o) __ (IU)
(0 i) = A+ i)y LI
2 1
(w3 — 1) 2°P
— () (0) —
5 (v + 9 2<ay5 B )

These relations simplify considerably when the pressure gradient is linear in %, for then, first,
the two expressions (10) and (11) for P are the same, so that P given by (12) is independent
of y, and the various derivatives of P on the right-hand side of (13) then vanish. And secondly,
we then have

i — v = (%) ~ (%) =ta—m) 5 - . B (T

exabtly, so that 13 (d) and (e) become

. . a*
(87 + w80 = 2 (92" + 910 @g

o nma( @)+ D] 2

heﬁ_ce if y, satisfies (7) (d) and (e), then so does w,.

“Thus, for the case with which this report is primarily concerned, it appears that the method
of solution adopted necessarily imposes the conditions (7) (a), (b), (d), (e) on the approximate
solution obtained. This may be significant in discussing how much information about the flow
in the immediate neighbourhood of the separation point can be deduced from the results of these
calculations (see section 10).

On the other hand (13) (c) and (f) are not exactly equivalent to (7) (c) and (f) respectivély.

5. Form of Equation Suitable for Integration for Small x.—The form (6) of the boundary-layer
equation (or the form (9) by which it is replaced) is not suitable for integration in the neighbour-
hood of the leading edge of a plate, on account of the presence of a singularity there. The nature
of ‘this singularity and the fact that when the pressure gradient is zero, ¥ is a function of y/x/*
only, suggests the use of the variables

§ =, n = y/2*, .. . . - .o - (16)
in this neighbourhood.



Since for zero pressure gradient the flow is a function of 5 only, it is probable that for other
pressure distributions the ¢ thickness ' of the boundary layer, and hence the range of integration
normal to the boundary to be covered before the flow becomes sensibly that in the main stream,
will be more nearly the same at different sections when expressed in terms of # rather than in
terms of y. Also the velocity distributions through the boundary layer at different sections
are likely to be more nearly the same when expressed as functions of 5 rather than of y, and
particularly so near the leading edge. For both reasons, the approximations made in replacing
the partial differential equation by an ordinary equation are likely to be smaller than when
the equation in (&, #) is used rather than that in (x, y), at any rate for small x.

In terms of (&, ), equation (6) becomes

03P 0 od\? oD\ %D
—8—7-7—3:55_5[(—8_1; '—*4U2]'—(¢—|—25—a—§>’a—?72,.. P . .. (17)
where
O =P, .. .. .. .. .. .. .. .. .. (18)
so that
u = 10D[oy . . .. . .. .. .. .. (19

The function @ defined by (18) is the function y/(bex»)"/* of Howarth’s paper*. Also for the
velocity distribution in the main stream (8), our x is Howarth’s 8x*, as already mentioned, hence

D = fi(n) — xfi(n) + 2*fa(n) — 2f(n) . . ., . . o .. (20)
where the f’s are the functions tabulated by Howarth.

Using Howarth’s tables, it is easy to evaluate the velocity distribution through the boundary
layer, and other data required for starting the integration, at a value of x away from the singularity
at the leading edge, but still near enough for the values derived from Howarth’s series, taken as
far as his tables go (up to fy), to be quite reliable to the last figure required. The starting point
chosen was x = 0-4, but in addition, as a test of the method of integration, and of the accuracy
to be expected of the method of correction for the finite size of x-interval, it was decided to carry
out an integration from x = 0 to 0-4 also. In terms of 7, there is no singularity at x = 0, but a
“ velocity distribution ™ there is needed to start the integration, since the boundary layer has
a non-zero thickness in 5 at x = 0; from (20) the required information at x = 0 is given by the
function f, and its derivatives.

6. Approximate Form of the Boundary-layer Equation in (£, n).—The replacement of the
boundary-layer equation in the form (17) by an equation for integration through a finite £-interval
raised two points in connection with the appropriate replacement of derivatives by finite
differences. :

The first is concerned with the appropriate replacement for £0@/0¢ and similar terms.
Replacement of & by its mean value and 8®/3¢ by the appropriate finite difference ratio gives

%(524—51)?::‘2, A 2 )

(where ¢ has been written for the function satisfied by the approximate equation), and the same
expression is obtained if we use the identity '

% _ 2
o B¢
and carry out the appropriate replacements.

¢ (¢9) — @,

* Ref. 8, formula (1).



" Thus (17) is replaced by :
> _bkh[(0h) (o)
377,3 (¢2 'I‘ ‘751) - Ey, — £, > - 5;)

on
2 (&, + & 92
—%[(¢2+¢1)+—§—2—_—f—r—5;—)(¢2—¢1)} xa—na(qsqusl)—z@, (22

where Q is the quantity used to replace the term 4£3(U?)/0¢ in (17). The second point is the
appropriate replacement for this term.

As in the case of the term in equation (6) not involving ¢, this term could be replaced, to equal
accuracy, in two ways, namely by the arithmetic mean of its initial and final values in the

x-interval.
8(U7) o(U7) ]
| Q=2[§2<—5§—‘>2+51(—£>l , .. .. .. .. .. (28)
or by using the form of replacement (21)
U2 — U2

Q=28+ &) " —F - (24)
With U = 1 — }é&, these give respectively

Q=—31[(&+ &) — (& + &) (a) } (25)

Q=—3[&+ &) — &+ &)1, (b)

and these are not the same, even for a linear pressure gradient. The former appears the more
natural if the term 4£3(U?)/0¢ is written in (17) in the explicit form — & (1 — }£) which it takes
with U = 1 — 1&, the latter appears the more natural if one starts from the general form of (17).

On further investigétion (25) (b) appears likely to be the better, since on substituting (24) in
(22) it will be seen that the boundary condition

30
on

at infinity can then be satisfied exactly by the approximate solutions ¢.

2U

rs

7. Process of Solution.—The process of solution of the ordinary equation (9) or (22) was the
same in principle in all cases. An outline of the process for equation (9) will be given, followed
by notes of the main points at which the integration of (22) difters from it.

The quantities required from the solution are the velocity profile, that is to say the distribution
of tangential velocity ¢’ through the boundary layer, and the normal gradient of the tangential
velocity at the boundary, v¢, which gives the skin friction and is needed to determine the separa-
tion point. The stream function y itself is of no particular interest ; from the point of view of the
integration it is merely an auxiliary variable introduced as the most convenient way of ensuring
that the equation of continuity is satisfied.

For any one x-interval, say from x = %, t0 ¥ = %, the flow at the initial section x = x, is
known, and as we will see, for the equation in the form (9) the only data necessary is p;as a
function of y; correspondingly v; as a function of y is required to form the data for the next

interval ¥ = x, t0 ¥ = ;. )
9



The equation to be solved, for each x-interval, is third-order non-linear, with two boundary
conditions specified at one end of the range of integration (y" = y» = 0 at ¥ = 0) and one at the
other (" — U as y— ). To obtain a solution satisfying them, it is necessary to use some form
of trial-and-error method, and the form of the boundary conditions suggests integrating from

vy = 0 with different trial values of (v}),, and adjusting the value of %, so that the solution
satisfies the condition at y = co.

The process of integration for any one trial value of (y%), is straightforward. The integration
formula

0 @) = [ oy = oy [ - G E O . .. (29

(here suffixes 0 and 1 indicate values at the ends of the interval §y of the y integration) was used
for each integration ; the interval of integration taken throughout was dy = 0-1, and the second -
difference terms in (26) were usually small and often negligible. As suggested by (26), the
quantities actually calculated are:—

63 2

0
5y (w2 + 1), 2552 (w2 + 1), 48'5, (ve 4= v1), 8 (v2 — vy),

the powers of 2 in the coefficients being chosen to avoid a large number of divisions by 2*,

For convenience in using these quantities, the equation is taken in the form

o ) = T =57 L[4 5 s+ 90} {455 (vs — v}
B e ]t 2P ] L e

For U = 1 — }x, the term 32P (¥, — x,) which is equal to — 16 (U,* — U,* (see (10)) becomes
116 — (2, + x,)] (%2 — 2y).

0? ¢
The quantities obtained by integration are 2 P (pa + v1), 4 565) (ws 4+ 1), 8 (v2 — 1) ;
o 0 .. .
4 5 (ws — w,) is obtained by subtracting 8 2v,/2y from 4 EYY (w2 -+ v1), and this is the only point

in the integration at which information concerning the velocity profile at x, is required.

The solutions with different starting values of [2? (v, + v,)/2y?], diverge rather rapidly from
one anothert beyond about y = 2, especially for the smaller values of x, — x,, whereas the
integration has to be taken to about y = 6 or ¥ = 8 before the flow in the boundary layer has
become substantially that in the mainstream. It is therefore usually necessary to interpolate,
at some intermediate y, between the solutions calculated with different trial starting values
of ', and to start a new integration from the interpolated values. This interpolation process
may have to be repeated many times (usually 10 to 20 times in the present work) before trial
solutions are obtained over the whole range, and near enough together for the solution satisfying
the conditions at infinity to be interpolated between them.

* I am indebted to Dr. L. J. Comrie for suggesting this arrangement, which has been very successful.
T The difference between two such solutions may increase by a factor 2,000 or more in a range of 1 in y.
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Before starting a solution from interpolated values of 2 (4 + i) etc., it is necessary to
verify that the use of linear interpolation is justified. This can be done by interpolating

82 o . 33 -
2@—2 (wa + v1), 4 5y (w2 = v1), 8 (v, — v,), and evaluating v (v, + v,) from them using (27);
3

if the result agrees with the interpolated value of 53}—3 (¥ + v,), then linear interpolation is justified*.

Approaching the separation point, the solutions for different trial values of (y7), run nearly
parallel to one another for a long way (out to about y = 2) and then separate rapidly. Study
of the numerical details of the integration shows that 8* (y, -+ v,)/2y® is remarkably insensitive
to the value taken for [8% (s + v1)/2y%s, although the separate terms in (27) may individually
have considerably different values in the two integrations. This means that the integration of a
trial solution has to be continued over quite a considerable range from y = 0 before the behaviour
of  shows in which way the solution is going to diverge. The result is that, unless care is taken,

the accumulated effects of rounding-off errors may mask the real effects of a change of trial
value of [0% (, + v,)/8y*]. Thus in this region (y%), is not very well defined by the condition
at y = oo. and special precautions (such as the retention of an extra place of decimals to keep
down the effect of rounding-off errors) are necessary to obtain a good approximation to the position
of the separation point.

This behaviour is probably not accidental. Rather similar behaviour was found in the case
of the solutions of a related equation arising in Falkner and Skan’s treatment of the boundary-
layer equationt, and this behaviour is probably related also to the difficulty that was met in
trying to find any approximation to a solution downstream from the separation point.

In the integration for a single x-interval it is only necessary to work with the functions
s + v, and their derivatives. Once a *‘ final 7 solution, namely one satisfying the boundary
condition at y = w, has been obtained, 8 (y; — v1) is calculated for it and added to the given
8y! to give 8yj, which is them smoothed before being used as the given function 8y; for the
next x-interval.

This smoothing of the values of y; is important, as the process used to correct for the finite
length of x-interval tends to exaggerate small irregularities in the data or integration as will be
seen shortly. Also the quantity actually calculated in the integration is 4 (y; + vi), and any
irregularities (due to rounding-off errors) in it are, in effect, doubled in calculating 8y,’, and these
irregularities might exaggerate the effects of rounding-off errors in 8y;.

Similarly it is advisable to ensure that the numerical values of 8y’ for small y are in fact
consistent with the conditions (7) (a), (b), (d), (e), which we have seen the approximate solution
should satisfy exactly (apart from rounding-off errors) when p is quadratic in ». With
U = 1 — }x, these conditions become

o wo' =4 (1 — 32), 9 =0, 98 = — 5 9 9P = — 535 (1 — 3%) ,

so that

; ’ r’ 1 1 9 8‘/’5}) 4 1/‘)61 5 1 - ng [ 8/‘/)((;””) 7

.y 8y =8y y + (1 — %)y - 41 Y T 180Y — 32%x720” T Er Y (28)
“hus we should have :

Y34l 7Yt

L I8y { ' Yo 1 — ix } 1 8y | 8yf
. [v — 18y + (1 —%x)y~;@)y4—m0y5}

o'

* This criterion is not a general one, but applies in the present case because departures from linearity appear first
in the highest derivative and increase rapidly with y.
% Ref. 4. The behaviour referred to is the insensitiveness of y’, at large %, to y"(0) for small g — B, so that y”(0)
is not well determined by the condition on ¥’ at large x (see section 3 of the paper quoted). f = B, corresponds, in a
sense, to separation. :
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The left-hand side is evaluated from the values of 8¢’ and plotted against 1*, usually for values
of y up to 1-5. For small y (less than about y = 0-5) the plotted points are usually irregular on
account of the considerable contribution from a unit in the last decimal when divided by 34,
but this can be indicated in plotting. Allowing for this, a smooth curve (usually a straight line)

is drawn ¢ through ”’ the points, the values of the right-hand side read off, and values of 8y’
reconstructed from them*.

In the smoothing and adjustment of the values of 8y’, it was very seldom necessary to alter

any value by more than a unit in the last decimal, and only about one in ten of the values were
altered by a unit.

The process of correction for finite length of s-interval was as follows. The interval %, 1o %,
== %, + 2X was covered by two independent integrations, one with a single interval of length
2X and the other with two intervals of length X each. If 6, and 6,, are the values of any quantity
0, at ¥ = x, and the same value of y, calculated from the l-interval and 2-interval integrations,
respectively, then Richardson’s process of 4*-extrapolation?® gives

On+3 (00 —0) .. .. .. . .. (29

as the value corrected for finite length of x-interval. The correction is not, of course, exact,
but the two leading terms in the error are eliminated by this process.

As already mentioned, this process tends to exaggerate small irregularities in the initial data.
This can be seen as follows. Suppose that at x = x,, a single one of the values of »] is in error
by & so that the value used in the integration is | 4 ¢. This single irregularity would not -
greatly affect the integration, and in any case, since (¥2 + 1) is obtained by integration of
(9" + 1), wi -+ », is smooth (apart from rounding-off errors) so that ¢, deduced from the
integrated (y, -+ 91) and the given (y| - ¢), is in error by — e. Similarly the result y; for the
second interval »; would be in error by + . But y; obtained in l-interval would be in error
by — e, and using (29) it will be seen that the h*-extrapolated ”” value would be in error by 5e /3.

This shows how irregularities may build up, and why it is desirable to smooth the results at
each stage to prevent this occurring.+

For the equation in the form (22), the data required at the initial section consists of both
0¢,/0y and 4,; the latter is best obtained by integrating 2¢,/84. The equation can be put in
a slightly more convenient form for numerical work, but at best it is appreciably more com-

plicated than (27) on account of the appearance of factors involving & explicitly, and of (¢, + 4,)
as well as ¢, — ¢,.

8. Trial Solution, & = 0t00-4.—As already mentioned, it was decided first to carry out a
trial solution of (17) from & = 0 to 0-4, as a general test of the method.

In planning the details of the arrangement of the first experimental work, it happened that
the equation was written with the term — 4£2(U?) /£ in the explicit form £(1 — L&) which it
takes with U = 1 — }x, and consequently the substitution (25a) for Q) was used at first without
enquiry as to whether a more suitable substitution could be found. The first integrations, in
which three decimals were retained in 4% /d7* and 0¢ /07, were hardly precise enough to bring
into prominence the difficulty of satisfying the boundary conditions with this substitution for Q;
but the results were so encouraging that it seemed worth repeating the integrations with an extra
decimal throughout, and then the difficulty was plain. This led to a further examination of

the approximate equation from the point of view of the terminal conditions to be satisfied, and
this showed the formal advantage of the substitution (25b).

* For this method of adjusting 9 to the series, I am indebted to Mr. W. Hartree,
In the work as actually carried out, the coefficient of ¥%in (28) was taken, in error, to be (1 — 3x)/16 X720 ; this error

was not noticed till long after the work was completed, but it is not likely to have effected the results seriously. I am
indebted to Dr. C. W. Jones for the correction.

T Some part of the accumulation of errors in this way can be avoided by taking four short intervals and #wo long
ones before carrying out the process of A%-extrapolation.
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To see whether this formally more satisfactory substitution gave quantitatively better results
in practice, integrations were carried out with it as well. In all integrations the interval & = 0
to 0-4 was covered by two independent calculations, one with one interval § = 0 to 0-4, and the
other with two intervals £ = 0t0 0-2, § = 0-2 to 0-4. The results are summarised in Table 1.
This shows the advantage of the substitution (25b) over the substitution (25a) on all counts;
the errors due to finite x-interval are smaller, and the 4*extrapolated values are more accurate.

The full results with substitution (25b) are shown in Table 2, and compared with results of
calculations from Howarth’s tables. The results of the integration seem highly satisfactory.
The maximum error in the values of 204 /0y is 0-0004 out of a maximum of 3-8, or 1 in 10,000
of the maximum velocity. As the fourth decimal was the last retained in the integration, which
covered a range of 4 in 7, this error is hardly greater than the possible cumulative rounding-off
error. The value of (8°%/27%), _, at & = 0-4 agrees almost exactly with the value calculated from
Howarth’s series, but the extreme closeness of the agreement is probably a numerical accident.

These results were regarded as good enough to justify the retention of a fourth decimal in the
further work. The accuracy and range of Howarth’s tables are only just enough to guarantee a
fourth decimal in 204/2% at x = 0-4*, and in going further we soon get beyond the range where
the results can be tested by comparison with his tables. But the satisfactory results of this
trial suggest that some confidence can be placed in the results of the continuation of the integration
by the same method.

9. Continuation of the Solution.— Starting from the values of 20¢/dyn at & = 0-4, calculated
from Howarth’s tables and tabulated in Table 2, the range & = 0-4 to 0-8 was covered in one
and two steps. The results of these two separate integrations, and the results obtained from
them by A*-extrapolation and smoothed, are given in Table 3. The maximum difference between
the results of the one-step and two-step calculations is about 1-7 times as large as for the interval
& =0 to 0+4, and occurs at about the same place (y = 1-5).

The calculation was first carried out to three decimals in 29¢/05, and then repeated to four
decimals; this or a similar process was used throughout a large part of the work; the three-
decimal solution forms a valuable guide in the four-decimal work, in providing approximate
values for the variation of the solution with variation of the trial starting value of [0*(¢,-+¢,)/95%],,
and in suggesting the appropriate interpolation between two trial solutions.

It is perhaps worth noting that the final results of the three-decimal calculations nowhere
differ by more than 2 in the third decimal from the results of the four-decimal calculations.
In view of the large number of possibilities of accumulation of rounding-up errors in the various
integrations and interpolations, this degree of accuracy in the last decimal retained seems rather
surprising. The fact that the solution has to fit boundary conditions at both ends of the range
is not in itself an adequate explanation, for it might be possible for the solution to be appreciably
in error for finite y, and still fit the boundary condition at ¥ = . This accuracy in the last
decimal has been noticed in other calculations of this kind (for example in the solution of the
equation 96/0¢ = 8%0/ox* + 1 used by Hartree and Womersley as a test of the method of integra-
tion), and appears to be characteristic of them. It suggests that also the fourth decimal in the
four-decimal calculations may be given some significance, although it was really only retained
to avoid the accumulation of rounding-off ertors in the third decimal.

By the time x = 0-8 had been reached, the awkward form of equation (21) for practical work
had become very clear to all who had taken part in the numerical work. Since the integration
had by then been taken well away from the singularity at the leading edge, so that the argument
in favour of (22) rather than (9) had no longer much weight, and it was anticipated that with
the best conditions the approach to the separation point might be rather troublesome, it was
decided to change over to the use of the simpler equation (9), with y as the co-ordinate normal
to the boundary.

* The contributions from the functions f’,, f g . . ., which have not been calculated by Howarth, may amount to 1
in the fourth decimal at & = 0-4, but they can probably be estimated to adequate accuracy. Five decimals in 940
were kept in the calculations from Howarth’s tables, to avoid the accumulation of rounding-off errors.
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At x = 0-8, » = y/2.(0-8)"* = 0-559017y, and the solution was available at exact values
of % (multlples of 0-1), as tabulated in Table 3. Values of 20¢/¢n were interpolated at multiples
of 0-1 in y, and converted into values of 89y/¢y for use in equation (9) in form (27) ; these values,
smoothed and adjusted by (28), are given in the second column in Table 4, and formed the startlng
point for the further integration. It would have been possible to continue using values of y
corresponding to the exact values of 4 at x = 0-8, but it was judged that the time and trouble
of interpolating to exact values of y would be rep"ud in quicker and easier working later, and this
was undoubtedly the case.

The aim of the subsequent work was twofold. First, it was required to determine the separation
point as accurately as possible, and, if possible, the flow in the immediate neighbourhood of
the separation point and the nature of the singularity at that point. Secondly, it was required
to calculate the flow through the whole boundary layer, for evaluation of the integrals

f (1 — u/U) dy for the ‘displacement thickness” and J (#/U) (1 — u/U) dy for the
0 0

“ momentum thickness ”’

For the determination of the separation point and the flow in its neighbourhood it was not
necessary to integrate the equations through the whole thlckness of the boundary layer, as in
the trial-and-error determination of the starting value of (y;" 4+ v{'), in order to obtain a solution
with the right behaviour at o, solutions with different trial starting values diverge so rapidly
beyond about y = 2-5 that the behaviour of two trial solutions at about y = 31is already enough
to show how the required solution must be interpolated between them, accurately enough to
establish the fourth decimal in this solution out to about y = 2-5.

Thus for this purpose it is only necessary to take successive 1ntegrat10ns out progressively less
and less far from the boundary. On the other hand, as already explained, it is desirable to carry
out these integrations to the highest degree of numerical accuracy which the data and method
will provide. Four decimals were retained through this part of the work, the four-decimal
calculations being usually preceded by three-decimal calculations to provide a guide as already
explained.

After some experiments with longer x steps, the following were adopted :

Stage (A). x =0-8 to 0-88 in one and two steps; correction at x = 0-88 for finite size
of x steps.

Stage (B). Using the final results of stage (A), ¥ = 0-88 to 0-94 in one and two steps;
correction at x = 0-94 for finite size of x steps.

Stage (C). Using the final results of stage (B), x = 0-94 to 0-956 and 0-94 to 0-958, each
in one and two steps, and correction for finite size of x steps.

The final results of each stage were smoothed and adjusted to the series (28) as already explained
before being used as the starting values for the next stage.

For stage (B), an attempt was first made to go from x = 0-88 to 0-96 in one and two steps,
but the difference between the results at x = 0-96 in one and two steps was too large to give
confidence in the results as part of the data for determining the separation point. The corrections
for the finite length of x-interval increase rapidly on close approach to the separation point,
and it seemed advisable to approach it by intervals as small as were practicable.

For stage (C), it was at first intended to go from x = 0-94 to 0-96 in one and two steps, but
no solution could be found for the second step, and it was later found that x = 0-96 is just beyond
the separation point.
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The results at x = 0-956 and 0-958 were both calculated by one and two steps from x = 0-94;
the correction for the finite size of x-interval at x = 0-958 was about three times that at
x = 0-956; this rapid increase is presumably due to the close approach to the singularity at the
separation point. Despite this, an attempt was made to reach the separation point itself, and
appeared to be successful ; this will be discussed in section 10.

For the calculation of the flow well away from the boundary, it seemed adequate to dispense
with the fourth decimal, and three decimals in 83y/0y were kept throughout; also it seemed
adequate to work with larger x-intervals beyond x = 0-88. A unit in the third decimal represents
about 1 part in 8,000 of the velocity in the main stream, and the retention of this decimal is
probably enough to guard against the accumulation of rounding-off errors to any extent which
would be appreciable in the use of the results. The greatest correction for finite interval length
at ¥ = 0-88 and x = 0-94 was only 1; in the third decimal, so the results at x = 0-84 and 0-92
should not be in error by more than 1 in the last decimal, as far as errors due to the finite length
of x-interval are concerned.

A complete table of the results is given in Table'4d. For x = 0-84, 0-91, 0-92, 0-948, 0-949
only results calculated in one step are available, and these are tabulated. For x = 0-88, 0-94,
0-956, 0-958 results calculated by one step and two steps are given to show the magnitude of the
difference, and also “ final ”’ results, namely, results corrected for finite size of x-interval and,
for x = 0-88 and 0-94 for which the results formed the starting point for further integrations,
smoothed and ajusted by the series (28).

@0

Values of the displacement thickness f (1 — #/U) dy, the momentum thickness

0

Jw (#/U) (1 — »/U) dy, and 2 (3u/oy), are given in Table 5.
0

The “ final” values of 2 (du/dy), which are not enclosed in brackets have been obtained
by Richardson’s process of h*-extrapolation from the results of calculation by one and two steps,
and subsequent adjustment to fit the series (28). This adjustment is responsible for the differences
of a unit in the last figure, in some cases, between the “ final ” values and the values obtained
by h*extrapolation. Approximate corrections for interval length have also been applied to the
values of 2 (du/dy), for which only results calculated by one step are available. From the
general theory of the method of integration, it follows that the leading term in the error after
one step éx — 4 is a quarter of that after two such steps. The error in the latter case can be
estimated from the results of calculations with two small steps éx = 4 and one large step
5% = 24, and hence a correction to the results calculated by one small step éx = 4 can be
estimated. ¢ Final” results involving corrections thus estimated are enclosed in brackets.

10. The Separation Point.—There are two ways of attempting to determine the position of the
separation point from the results of integrations such as those considered in this report. One
is to carry out the integrations up to points as near the separation point as possible, to determine
the value of (9u/dy),, the velocity gradient at the boundary, at different sections, and to extra-
polate, from these values, the value of x at which (3#/2y), = 0. The other way is to carry the
integration up to the separation point itself by altering slightly the trial and error process for
finding the solution satisfying the required boundary conditions; instead of taking a given
x-interval and adjusting (v;'), so that the solution satisfies the required condition at «, one can
specify (p5)o = 0 and adjust the x-interval length. Both these methods have been used, and
give closely consistent values for #,, the value of x at the separation point.

The values of 2 (3u/dy), = 2y}’ at different sections are given in Table 5. The extrapolation
of the separation point from these values of 2 (8u/0y), would be most satisfactory and convincing
if it were known how (du/dy), should vary near the separation point, so that the extrapolation
would be simply a matter of determining constants in a known formula. But no analytical
investigation of the nature of the singularity at separation, and of the flow upstream from separa-
tion, was available at first. Goldstein® had examined the flow downstream from an arbitrary
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given velocity distribution through the boundary layer, and had considered shortly the case
when this velocity distribution was such that (e#/2y), = 0 (Ref. 3, section 4.1), but this problem
is rather different from the problem of the flow upsiream from separation, in which the velocity
distribution at separation is essentially not given, but has to be determined from the boundary-
layer equation and the flow further upstream. Thus there was no theoretical formula with which
to compare the results of the integration, and in the first instance the analysis of these results
had to be more or less empirical. Different methods of making this analysis, either by plotting
log [2 (9u/2y),] against log (x, — x) for different values of x,, or by plotting [2 (0u/dy),]'/*
agamst x for different values of g, all showed that, near the separation point, the values of
2 (ou/oy), could be fitted closely by

2 (Bufoy)e o (%, —x)7, .. o O 22

with x, close to 0-959, and ¢ definitely greater than { and less than . A value about g = 0-6
seemed indicated, and indeed the whole set of values of 2 (9u/0y), from x = (-8 onwards are
represented very closely by (29) with ¢ = 0-6. :

At this stage, the results were discussed with Dr. Goldstein, who undertook further analytical
examination of the flow upstream from separation. An account of this work has recently been
published™.

Goldstein found first that the boundary-layer equations have no solution giving a relation of
the form (29) for the behaviour of (¢u/dy),, with the index ¢ greater than } and less than £, and
with # finite at x = %, y = 0. This showed that, as seemed possible from the first, (29) was
simply an empirical formula fitting the available numerical data, but having no theoretical
basis. Such an empirical fit can, of course, only suggest and not establish the limiting behaviour
of (ou/ty), as x— x,; if (9u/0y), were really expressible, for example, in a power series in
(%, — x)'/* beginning with a term in (¥, — x)'%, then for the small, but not extremely small values
of (¥, — ) for which values of (9u/0y), are avallable the behaviour of the function defined by the
power series might simulate quite closely the behaviour expressed by (29) with y = 0-6.

From Goldstein’s results for the flow downstream from a given velocity distribution at separation,
it follows that either the singularity at separation is of such a kind that (2«/2y), = O [(x — x,)"/*],
in which case the condition (7a) of the present report is violated at the separation point, or the
singularity is of a less drastic kind in which (8u/2y), = O [(x — #,)"/*] and the conditions (7a),
(7b) still hold at the separation point itself. Although, as already pointed out, these results are
not directly applicable to the present problem, they suggest the kind of solution to be examined.

The values of (9%/2y), calculated by integration seem to rule out a limiting behaviour described
by an index ¢ = } in (29), hence only the index } seemed possible, and this case was examined
in detail by Goldstein for the flow upstream from separation. The results so far obtained, and
as far as they concern the present discussion, are as follows.

Notation :(—
U, = value of U, at separation,

U," = value of dU,/dx, at separation,
l,=—UJU/,
R, =LU/»,
% = [(%)s — %/l
= Rsl/z ya/ls=
w, = u,/U,
hH= Pa/PuUsz:

(a suffix @ is used here to represent values of quantities in some dimensional system of measure-
ments, since the symbols x, vy, % . . . without suffixes are used in this report for non-dimensional
quantities).
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Let the pressure distribution near separation be such that

ail_ 1+ P, + Pox® + Pex® . .., .. .. .. . .. (30)

so that for U=b,—bx,P,=1P,=P,=...=0.
Also let , & = x4, 0y = /22 21t
and suppose that the velocity », at separation is e)ipansible in the form

(#)ico = @y + @:y:® + ay® + . . ., P 7))
and that the velocity gradient at the solid boundary, upstream from separation, is given by

ou

a—yi)%:(, =27 (b F ot L) . . (82

Then a, = § and a5 = 0 (so that the relations (7a), (7b) still hold), «, is arbitrary, and the other

coefficients are determined in terms of it by relations of which the first few are [Ref. 14, formule
(29) and (31)—(34)1

o, = 17782 (@)
oy = 3-311g® (0)
a, = — §o,® (¢ > .. .. .. .. .o (83)
a, = — 0-135q,? (d)
P
a5 = — 0-05950" — 755 () |

Since the boundary-layer equation, in the dimensionless reduced form (1) which has been taken
as the basis of the present work, can be derived from the dimensional form by putting » = 1,
p = 1, it follows that the relations between Goldstein’s reduced variables and those of this paper,
defined in section 2, can be obtained by putting » = 1, p = 1 in the definitions of his reduced
variables and dropping the suffix 4. Thus, for example taking x, = 0-959 as the separation
point to an adequate approximation for the present purpose, we have

—Ul=%, U =1—4%(0-959) =0-88, =704, R, =6-2. . .o (34)
Now from (32)
ou\ _ RMU, rou, _ PBRRIFU, [ %, — x\'* x, — x\* ]
@>}"0 o ayl>3 o I X 011( A + o (“7\* > + ..,
or, on substitution for «,, o4 in terms of «,; from (33) (a), (b),
2 (ou/dy PRRMU, 1-7780,* 3-3114,°
(xf —/le),;’ = Zsé/z [‘71 + L = (x — )+ A et } '

With the numerical values (84) appropriate to the present case, this becomes*

ou/cy)
100 - r100(( 2 277 = 6765 [0 + 0-3453,0,%(100 (x, — 2)}"

4+ 0-1248 0,100 (x, — )2 4. . .]. L. (35)

(The factors 100 are introduced for numerical convenience).

On the assumptions on which this formula is deduced, namely that there is a singularity at
separation of such a nature that (3u/8y), = O [(x, — )1/2] for x — x,, the velocity gradient at
the boundary, upstream from the separation po1nt but in the neighbourhood of it, must vary

*1 am indebted to Dr. C. W. Jones for corrections to the values of the numerical coefficients in this equation.
Consequent corrections have been made in Fig. 1, in the value (36) of x;, and in Table 6 (Nov. 1948).
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according to (35) for some value of «,, and it is required to deduce the value of «, and x, from
the observed values of (Pu#/dy), near the separation point. This is most conveniently done
graphically by plotting (0u/oy),/(x, — x)"/* against (x, — x)"/* (or convenient multiples of these
variables as indicated in (35)). 'This is done in Fig. 1. A set of curves, drawn according to (35)
for different values of a,, gives a set of possible variations of the right-hand side of (85) in the
immediate neighbourhood of the separation point; these are shown by broken curves in the
figure. Since x is not exactly known, it is necessary to use different trial values in evaluating
the left-hand side of (35) from the values of 2(du/dy), obtained from the integration and given
in Table 5; curves drawn through points so calculated for x, = 0-9588 and 0-9590 are shown
by full lines in the figure.

The fit between the two kinds of curve is not perfect, but a fairly good fit is given by
o, = 0-47 .. . . .. . . .. .. (36)

approximately, of the set of curves given by (35), and the curve for a value of x slightly smaller
than

%, == 0-9589 | O £ 7

Such a curve is shown thus:— ——.—..
The ““ bump " in the curve at about x = 0-95 is curious, but seems real. The general agree-
ment between the calculations for different values of x-interval length seems a good check
against gross errors in the numerical work, and it does not seem at all probable that the results
are subject to such errors. The smallness of the corrections for x-interval length makes it seem
probable that, except perhaps at x = 0-958, the values of 2 (91/2y), tabulated in Table 5, and
used in plotting the results in Fig. 1, are not in error by more than 0-0002. At the bottom of
the figure is a set of vertical lines showing the displacement in ordinate of plotted points at
different values of x, for a difference of 0-0005 in the value of 2 (du/8y),, and the errors in the
plotted points should not be half the length of the corresponding lines ; corrections for such errors
(if they really existed) would not smooth out the “ bump . If the point at x = 0-956 was
omitted, a smoother fit can be made by taking o, = 0-51, x, = 0-9587 approximately; but
there seems no other reason for rejecting the results at x = 0-956.

As already mentioned, an attempt was also made to carry the process of numerical integration
up to the separation point itself, by taking (v,), = 0 and adjusting the length of the x interval
so that the boundary condition at infinity was satisfied ; this was found to be quite practicable.
The integration starting from x, — 0-94, and going to the separation point (defined by (), = )
in one step, gave x, — 09592, whereas an integration also starting from x = 0-94, taking one
step to x = 0-95 and another from there to separation, gave x = 0-9590. The results are
given in Table 6, and there are in surprisingly close agreement, considering the large correction
for interval length at x — 0-958, compared to that at x = 0-956, already noted.

Values of 8 (¢y/¢y) corrected for x-interval length are also given in Table 8; the correction is
only approximate, as in the two-step integration the intervals were not of exactly the same
length, and in any case it is not clear that Richardson’s 4*-extrapolation process is valid in the
present case, when the range of integration in x has been defined by %", not in terms of x. But
the correction is small and should be approximately correct. The agreement with the value
(37) for the position of the separation point is excellent.

Using the relations (33) (), (d), (e), and the value (36) of «,, the velocity profile at separation
becomes

8u = 0-4403y* — 0-0041y* — 0-0005,1° — 0-0000;5° . .. . .. (38)

Values of 82y/?y = 8u at separation, calculated from this formhula, are given in Table 6 for
comparison with the results of the integration out to the separation point. The agreement is
good out to about y = 0-8, and this is about as far as any agreement in the fourth decimal
place is to be expected, since in fitting the series (28) to the velocity distribution through the
boundary layer at the separation point, it is usually found that terms of order »* and higher
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give appreciable contributions to the fourth decimal in 8« at y = I, and probably the same as
the case here. In view of this, and of the doubt about the validity of the correction for x-interval
length for the values of 8 at separation the agreement seems staisfactory.

In comparing these results, it must not be forgotten that, as pointed out in section 4, the process
of integration imposes on the approximate solution v certain conditions, such as ' — u, = dj;;,
wo! == )" =0, for all x. Thus even if there were a singularity of a kind for which these
conditions were violated, the method of integration up to the separation point would fail to
reveal its nature.  But the values of 2 (3u/2y), seem to indicate rather definitely that this quantity
has not the behaviour 2 (du/2y), == O [(x, — x)¥*] to be expected if there is such a singularity,

and, if it has not, then the fact that the integration up to separation could not reveal such a
singularity is no reason for suspecting the results of the integration in this case.

There are, however, two difficulties remaining.

Iirst, a singularity of the type assumed would make the normal velocity v, at the separation
point, become infinite like (x, — x)~"* (for y == 0). Large normal velocities are to be expected
at separation, and the appearance of formal infinities may simply be a sign of the breakdown of
the assumptions of the boundary-layer theory (negligible normal accelerations and rates of shear).

Further, the expressions for the o ’s such as (33) (a), (b), are found from the condition that
the solution for the function f, , in the expansion

y = 2&,2 [fnl(ﬁl) -+ 51f1,(771) + é"lzfz’ (771) + .. ]

should not contain exponentially large terms in its asymptotic expansion for large . For f,
however, Goldstein found that this condition does not determine «,, but gives a relation (Ref. 14,
formula (33)) between the functions f; to f;, and it was not clear whether this relation is satisfied.
If it 1s not satisfied, the conclusion would seem to be that the singularity is not of the type
assumed, and it is doubtful whether there is any other kind of singularity which gives a solution
of the boundary-layer equations at separation. This point has been examined more recently

by Dr. € .W. Jones"™, who comes to the conclusion that the condition is satisfied, so that there is
a singularity of the kind supposed

It is difficult from a purely numerical treatment of the solution of the equations to make
absolutely certain of the existence of a singularity or separation, but all the evidence of the
present work suggests that there is one. The main lines of evidence are as follows.

() The variaton of 2 (9u/2y), with x near the separation point does not suggest a polynomial
variation with (¥ — x,), as would be necessary to avoid a singularity.

(b) If there were no singularity, the correction for size of x-interval length would not be expected

to increase very rapidly as the separation point is approached, as in fact it does (compare results
at x = 0-956 and 0-958 in Table 4).

(c) If there were no singularity at the separation point, the velocity distribution there would
have no terms in »*, y*, 3°, and would be

8u = 0-4400y* — 0-0000, y°,
which does not fit the velocity profile calculated by integration (compare (38) and Table 6).

(d) If there were no singularity at the separation point, no difficulty would be expected in
taking the solution through this point, or in starting from it and working downstream. Actually
both these processes have been tried fairly thoroughly, and in neither case has it been found
possible to get any solution at all satisfying the boundary condition at y = o, for any starting
value of (y.),. In this connection, it should be mentioned that Goldstein found (Ref. 14, p. 50
and 55) that the fact that a, in (31) is necessarily negative (see (33) (c)) means that there is no
real solution of the boundary-layer equations downstream from separation.

These results all strongly suggest the presence of a singularity of a fairly severe kind at the
separation point.

20



v

¢

11. Acknowledgments.—I1 wish to Jacknowledge my thanks and indebtedness to Dr. S. Goldstein

for his interest

permission to quote his results referred to in section 10.

and for many valuable discussions during the course of this work, and for his
Also I wish to express my thanks to

the Aeronautical Research Committee for a grant to enable me to obtain professional assistance
in some of the extensive computing work involved, and to Dr. L. J. Comrie, Director of Scientific
Computing Service Ltd., and his staff for their contributions to the progress of the work. Further,
I wish to acknowledge the very substantial help I had from my father, the late Mr. W. Hartree,
in the balance of the computing work, both in the exploratory work discussed in section 8 which

established the

possibility of using the method contemplated and subsequently, particularly in

the rather tedious and trying work with small x-intervals used in approaching the separation

point.
REFERENCES
No. Author Title, etc.
1.  V.Bush .. .. .. .. .. Journ, Franklin Inst., Vol. 212, p. 447 (1931).
2. C. Copple, D. R. Hartree, A. Porter Journ. Inst. Elect. Eng., Vol. 85, p. 56 (1939).
and H. Tyson.
3 S. Goldstein .. .. .. Proc. Camb. Phil. Soc., Vol. 26, p. 1 (1930).
4 D. R. Hartree .. .. . .. Proc. Camb. Phil. Soc., Vol. 33, p. 225 (1937).
5. D. R. Hartree and J. R. Womersley Proc. Roy. Soc., Vol. 161, p. 353 (1937)
6. D.R. Hartree .. .. .. .. Math. Gazette, Vol. 22, p. 342 (1938).
7. L. Howarth R. & M. 1632 (1934).
8. L.Howarth .. . .. .. Proc. Roy. Soc., Vol. 164, p. 547 (1938)
9. T. von Karman and C. Millikan .. N.A.C.A. Report No. 504 (1934).
10. K. Pohlhausen .. .. .. .. Zeit. f. ang. Math. und. Mech., Vol. 1, p. 252 (1921).

11. L. Prandtl

Zeit. f. ang. Math. und Mech., Vol. 18, p. 77 (1938).

12. L. F. Richardson .. .. .. Phil. Trans. Roy. Soc., Vol. 226, p. 299 (1927).

13. - G. B. Schub
14. S. Goldstein

auer . .. .. N.A.C.A. Report No. 527 (1935.)
Quart. Journ. Mech. and Appl. Math:, Vol. 1, p. 43 (1948).
5,

15.  C.W. Jones .. .. .. .. Quart. Journ. Mech. and Appl. Math., Vol. 1, p. 385, (1948).
16.  J. H. Preston .. .. .. .. Phil. Mag., Vol. 31, p. 452 (1941).
TABLE 1:
Trial Integration: & = 0 fo 0-4 in One and Two Steps
’ Summary of Results
Results using -Results using Results calculated
substitution substitution from Howarth’s
(25a) for @ (25b) for Q Tables
o( Lo
§=02(50) 1-1238, 1-1211, 1-1208,
82¢)
§=0-4 (5—172 |
one step .. .. .. .. 0-9167; 0-9063 b
two steps .. . .. .. 0-9075 0-9045; 0-9039,
h*-extrapolated .. .. .. 0-9044 0-9039;
& = 0-4 Maximum error in 9¢/oy |
one step .. .. .. .. 0-0244 0-0122
two steps .. .. .. .. 0-0069 0-0031
hP-extrapolated .. .. .. 0-0005 0-0004

(90347)
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TABLE 2 _
Trial ihtegmtion, & =0¢0 0-4 n One and Two Steps

Results at & = 0-4, using substitution (25b) for @, and comparison with
results calculated from Howarth®*s tables

Final (Final)
One step Two steps (h2-extra- Howarth —{Howarth)
polated) 4th decimal
(82p/51%), 0-9063 0-9045; 0-9039, 0-9039; —0,
2 Table of 20¢/dy
0-0 0-0000 0-0000 0-0000 0-0000 0
0-1 0-1848; 0-1846; 0-1846 0-1846 0
0-2 0-3775; 0-3768 0-3765; 0-3765; 0
0-3 0-5771; 05759 0-5755; 0-5755 405
0-4 0-7830 0-7812 0-7806 0-7805; +04
0-5 0-9940 0-9914, 0-9906 - 0-9905; +0;
0-6 1-2086; 1-2054 1-2043 1-2041 +2
0-7 1-4252 1-4211 1-4197 1-4194, +2;
0-8 1-6416; 1-6367, 1-6351 1-6348 +3
0-9 1-8558; 1-8500; 1-8481 1-8478; 42
1-0 2-0856 2-0590; 2-0568; 2-0564; +4
1-1 2-2685; 2-2612; 2-2588; 2-2584 +4;
1-2 2-4624 2-4544, 2-4518 2-4514 +4
1-3 2-6452 2-8366; 2-6338 2-6335 +3
1-4 2-8150, 2-8061; 2-8032 2-8030 +2
1-5 2-9706 29615, 2-9585; 2-9584 41
1-6 3-1108 3-1019 3-0989 3-0988 +1
1-7 3-2352; 3-2266, 3-2237; 3-2237 +0;
1-8 3- 3440, 3-3356, 3-3328; 3-3328; 0
1-9 3-4371 3-4294 3-4268 3-4268 0
2-0 3-5156, 3-5086; 3-5063 3-5062; +05
2-1 3-5806 3-5744, 3-5724
2-2 3-6334 3-6280 3-6262 3-6262 0
2-3 3-6756 3-6710 3-6695
24 3-7086; 3-7048 3-7035 3-7034 +1
2-5 3-7339, 3-7309 3-7299
2-6 3-7531 37507, 3-7499, 3-7500 —0;
2-7 3-7673 3-7655 3-7649
2-8 3-7776 3-7761, 3-7756, 3-7755, +1
2-9 3-7849; 3-7838 3-7834
30 3-7900 3-7892 3-7889 3-7889 0
3-1 3-7935; 3-7929; 37927, '
3-2 3-7959 3-7955 3-7954 3-7953 1
3-3 3-7974; 3-7971; 3-7970,
3-4 3-7984, 3-7983 3-7982, 3-7981, 1
3-5 3-7990; 3-7990 3-7990
36 37994, 3-7994 3-7994 3-7993 1
37 3-7996; 3-7996; 3-7996,
3-8 3-7998, 3-7998 3-7998 3-7997, 05
39 3-7999 3-7999 3-7999
4-0 3-8000 3-7999; 3-7999, 3-7999 0;
4-1 3-8000 3-8000 3-8000
4-2 3-8000 3-8000 3-8000 3-8000 0
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TABLE 3

Results at & = 0-8 in One and Two Steps from & = 0-4

v Difference Final
One step Two steps | (1 step)—(2 step) | (h2-extrapolated)
4th decimal and smoothed)
(O%p/0n) 0-4018; 0-3997 21, 0-3990
7 - Table of 209/dy .

0-0 0-0000 0-0000 0 0-0000
0-1 0-0877 0-0872 5 0-0870
0-2 0-1897 0-1885, 11, 0-1881
-3 0-3057 0-3037 20 0-3030
0-4 0-4355 0-4323 32 0-4312
0-5 0-5778 0-5734 44 0-5719
0-6 0-7317 0-7260 57 0-7241
0-7 0-8957 0-8888 69 0-8864
0-8 1-0682; 1-0600; 82 1-0573
0-9 1-2477 1-2382 95 1-2350
1-0 1-4318 1-4211 107 1-4175
1-1 1-6186 1-6065 121 1-6025
1-2 1-8056 1-7924 - 132 1-7880
1-3 1-9904 1-9764 140 1-9717
1-4 2-1708 2-1560 148 2-1512
1-5 2-3442 2-3292 150 2-3242
1-6 2-5089 2-4939 ! 151 2-4888
1-7 2-6630 2-6482 | 148 2-6432
1-8 2-8050 2-7907 143 2-7859
19 2-9340 2-9203 137 2-9157
2-0 3-0491 3-0365 126 3-0323
2-1 3-1506 3-1391 115 3-1352
2-2 3-2383 3-2279 104 3-2246
2-3 3-3127 3-3039 88 3-3010
2-4 3-3753 3-3677 76 3-3652
2-5 3-4267 3-4208 64 3-4182
2-6 3-4684 3-4630 54 3-4613
2.7 3-5013 3-4971 42 3-4957
2-8 3-5271 3-5238 33 3-5227
2-9 3-5471 3-5444 27 3-5436
3-0 3-5621 3-5602 19 3-5595
3-1 3-5733 3-5718: 15 3-5714
3-2 3-5815 3-5804 11 3-5801
3-3 3-5872 3-5866 8 3-5864
3-4 3-5916 35910 8 3-5908
3-5 3-5945 3-5940 5 3-5939
3-6 3-5963 3-5961 2 3-5960
37 3-5978 3-5975 3 3-5974
3-8 3-5987 3-5984 3 3-5983
39 3-5993 3-5991 2 3-5990
4-0 3-5996 3-5995 2 3-5994,
4-1 3-5999 3-5997; 1, 3-5997
4-2 3-6000 3-5999 1 3-5999
4-3 3-6000 3-6000 0 3-6000
4-4 3-6000 3-6000 0 3-6000




TABLE 4
Results of Integration of Boundary-layer Equation for U = 1 — §x

| | l
x—0-80 | 084 |— 0-88 -~ 0-91 092 | 0-94
- 1 step 1 step 1 step Final 1 step 1 step 1 step 2 step

2(0%/0y%),| 0-2229 | 0-1808 | 0-1374 | 0-1383 | 0-1385 | 0-1024 | 0-0883 | 0-0586;| 0-0582;

y Table of 8dy/dy

00 0-0000 | 0-0000 | 0-0000 | 0-0000 | 0-0000 ; 0-0000 | 0-000 0-0000 | 0-0000

0-1 0-0936 | 0-0768 | 0-0595 | 0-0597;,| 0-0598,| 0-0453 | 0-039, | 0-0278,| 0-0277

0-2 0-1962 | 0-1624 | 0-1278 | 0-1284 | 0-1286 | 0-0994 | 0-088 0-0645 | 0-0643

0-3 0-3077 | 0-2570 | 0-2049 = 0-2058,| 0-2062 | 0-1624 | 0-145, | 0-1099 | 0-1096

0-4 0-4280 | 0-3604 | 0-2907 | 0-2020,) 0-2925 | 0-2341 | 0-212 0-1640 | 0-1636;

0-5 0-5569 | 0-4726 | 0-3853 | 0-3869 | 0-3874,] 0-3145 | 0-287, | 0-2268 | 0-2264

0-6 0-6942 | 0-5932 | 0-4883; 0-4903 | 0-4909 | 0-4033 | 0-371 0-2082 1 0-2977

0-7 0-8395 | 0-7221 1 0-5998;| 0-6020 | 0-6026;| 0-5006 | 0-463 0-3781 | 0-3774

0-8 0-9926 | 0-8590 @ 0-7196 | 0-7217,| 0-7225 | 0-6061 | 0-563, | 0-4663 | 0-4654

0-9 1-1532 1-0036 | 0-8472 | 0-8494 | 0-8502 - 0-7196 | 0-671; 0-5626 | 0-5615;

1-0 1-:3209 | 1-1556 | 0-9823 | 0-9846 | 0-9855 | 0-8408 | 0-787, | 0-6669 | 0-6656,

1-1 1-4954 1-3145 1-1247 1-1271 1-1280 , 0-9695 ' 0-911 0-7789 | 0-7774

1-2 1-6762 1-4800 1-2740 1-2766 1-2774 1-1054 1-042 0-8984 | 0-8967

1-3 1-8626 ' 1-6517 | 1-4300 | 1-4325 | 1-4334 | 1-2482 | 1-180 1-0251 | 1-0233

1-4 2-0540 | 1-8290 | 1-5921 | 1-5946 | 1-5955 | 1-3975 | 1-324; | 1-1587;| 1-1567;

1-5 2:2500 | 2-0114: 1:7597  1-7624 | 1-7633 | 1-5529 | 1-475; | 1-2990 | 1-2968;

1-6 2-4498 | 2-1983 1 1-9326 | 1-9354 | 1-9363 | 1-7139 | 1-632 1-4454 | 14431,

1-7 2-6528 | 2-3890 | 2-1101 | 2-1131 | 2-1140 | 1-8802 | 1-744 1-5977 | 1-5953

1-8 2-8580 | 2-5830 | 2-2907  2-2948 | 2-2958 | 2-0511 | 1-961 1-7553 | 1-7528

1-9 3-0646 | 2-7797 | 2-4770 | 2-4800 | 2-4818 | 2-2263 | 2-132; | 1-9181 | 1-9154

2-0 3-2720 | 2-9784 | 2-6654 | 2-6680 | 2-6690 | 2-4052 | 2-308 2-0854 | 2-0825;

2-1 3-4794 © 3-1781 | 2-8560 | 2-8584 ' 2-8593 | 2-5872 | 2-486; | 2-2568 | 2-2537

2-2 3-6862 | 3-3780 | 3-0479 ' 3-0504 | 3-0512;| 2-7715 | 2-667; | 2-4313 | 2-4283

2-3 3-8914 | 3-5776  3-2408 | 3-2433 | 3-2441 2-9578 | 2-851 2-6092 | 2-6058

2-4 4-0942 | 3-7763 | 3-4339 | 3-4363 | 3-4371 | 3-1453 | 3-036; | 2-7893 | 2-7858

2-5 4-2937 | 3-9732 |, 3-6266 3-6288 | 3-6296 | 3-3334 | 3-223

2:6 4-4892 | 4-1675 | 3-8182 | 3-8202 | 3-8209 | 3-5213 | 3-409,

2-7 4-6800 | 4-3585 7 4-0078 | 4-0097 | 4-0103 | 3-7085 | 3-595

2-8 4-8654 | 4-5454 | 4-1949 | 4-1966 | 4-1972 | 3-8941 | 3-780,

2-9 5-0442 | 4-7277 | 4-3788 | 4-3803 | 4-3808 3-964

3-0 5-2176 | 4-9047 : 4-5587 | 4-5600 | 4-5604 4145

31 5-3932 | 5-076 4-735 4-735 4-735 ! 4-324

32 5-5412 | 5-241 4-905 4-905 4-905 4-498;

3-3 5.-6912 | 5-398; | 5-071 5-070; | 5-070 4-669

34 5-8330 | 5-549; | 5-229 5:229 5.229 4-835

35 5-9666 | 5-693 5-381 5-381; | 5-381; 4-996

3-6 6-0918 | 5-829 | 5-526 5-526, | 5-527 5-151;




TABLE 4—continued |

l l
. 0-84 p 0-88 \ 0-91
%=0-80 1 step 1 step 2 step Final 1 step

y Table of 80p/dy

37 6-2082 5-956 5-664 5-664; 5-665
3-8 6-3162 6-075; 5:796 5-796 5-796
39 6-4158 6-187 5-920 5-920 5-920
4-0 6:5072 6-290, 6-037 6-036; 6-037
4-1 6-5906 6-386 6-145 6-144, 6-145
4-2 6-6664 6-474 6-245 6-245, 6-246
4-3 6-7348 6-555 6-337 6-339 6-339
4-4 6-7962 6-628 6-422 6-425 6-425
4-5 6-8510 6-694; 6-501 6-503; 6-504
4.6 6-8998 6-754; 6-574 6-575; 6-576
4.7 6-9430 6-808 6-639 6-641; 6-642
4-8 6-9810 6-855, 6-698 6-701 6-702
4-9 7-0142 6-897; 6-752 6-754; 6-755
5-0 7-0430 6-935 6-801 | 6-802 6-803
5-1 7-0680 6-968 6-844 6-845, 6-846
5-2 70896 6-997 6-882 6-883; 6-884
53 7-1082 7-022 6-914 6-917 6-918
5-4 71240 7-044, 6-944 6-946, 6-947
5-5 71874 7-063 6-969 6-972, 6-973
5.6 7-1488 7-079 6-991 G-995 6-996
5.7 7-1584 7-093 7-010 7-014; 7-016
5.8 7-1662 7-105 7028 7-031 7-032
5-9 7-1726 7-115 7-043 7-045,; 7-046
6-0 7-1780 7123 7:056 7-057; 7-058
6:2 71860 7-135; 7-076 7-077; 7-078
6-4 7-1912 7-144 7-091 7-091, 7092
6-6 71946 7-149, 7-101 7-101, 7102
6-8 7-1968 7-153, 7-107 7-107, 7:108
70 7-1982 7:156 7-112 74112 7-112
72 7-1991 7-158 - 7-115 7:115 7:115
7-4 71996 7159 7117 7-117 7:117
76 7:1998 7-159; 7:119 7-118; 7-118;
7-8 7-1999 7-160 7:120 7-119; 7-119;
8:0 72000 7-160 7-120 7-120 7-120
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TABLE 4—continued =~ _‘

| I ' l
x=0-948 | 0-949 'I 0-956 — |~ -0-958
1 step 1 step ’ 1 step I 2 step | Final 1 step 2 step
2(0%p/dy?), | 0-0425 0-0402 l 0-0204 | 0:0196 I 0-0193 0:0125 0-0106
y Table of 80¢/oy
00 0-0000 0-0000 0-0000 0-0000 0-0000 0:0000 -| 0-0000
0-1 0-0214 | 0-0205 0-0125 | 0-0122; | 0-0121, | 0-0093 0-0088
0-2 0-0516 0-0498 0-0339 0-0333 0-0331 0-0275 0-0262;
0-3 00905 0-0878 0:0840 0-0631; | 0-0828;, | 0-0545 0-0524;
0-4 0-1382 0-1345, | 0-1028 0-1017; | 0-1014 0-0902 0-0874
0-5 0-1945 0-1899, | 0-1502 0-1490 0-1488 0-1845 0-1310,
0-6 0-2593 0-2539 0-2063 0-2048, | p-2044 0-1874 0-1833 -
0-7 0-3327, |, 0-3264 0-2709 0-2692; | 0-2887 0-2489 0-2442
0-8 0-4145 0-4072 0-3438 0-3420, | 0-3415 0-3188 0-3135
0-9 0-5043 0-4962 0-4251 0-4231;, | 0-4225 0-3970 0-3011
1-0 0-6022 0-5982 0-5145 0-5123 0-5116 0-4833; | 0-4767,
1-1 0-7080 0-6982 0-6119 0-6094 0-6086 0-5777 0-5704
1-2 0-8213 0-8106 0-7170 0-7148 0-7184 0-6799 0-6719;
1-3 0-9420 0-9304 0-8295 0-8267 0-8258 '0-7896 0-7811
1-4 1-0697 1-0573 0-9494 0-9464 0-9454 0-9067 0-8976
1-5 1-2042 1-1910 1-0763 1-0781; | 1-0721 1-0309 1-0212
1-6 1-3451 1-3312 1-2100 1-2065; | 1-2054 1-1619 1-1517
1-7 . 1-4922 1-4775 1-3500 1-3464 1-8452 1-2994 1-2886
1-8 1-6449 1:6296 1:4959 1-4922 1-4910 1-4431 1-4318
1-9 1-8029 | 1-7869 1-6475 1-6437 1-6424
20 1-9567 1:9490 1-8043 1-8004 1-7990




TABLE 5

Displacement Thickness, Momentum Thickness and Velocity Gradient at Boundary,

Jor U=1—{x
Displacement Momentum 2(8u8y),
thickness thickness
x o I
® * Small Large Final
[ 0~ oy | | O — oy | S o ‘
0-80 2-248 0-719
0-84 2-290 0-746 0-1808 (0-1809)
0-88 2-546 0-772 0-1383 0-1374 0-1385
0-91 0-1023 (0-1022)
0-92 2-748 0-798 0-0883 (0-0882)
0-94 0-0582; 0-0586; 0-0582
0-948 00425 (0-0424)
0-949 0:0402 (0-0401)
0-950 0-0379 (0-0378)
0-956 0-0196 0-0204 0-0193
0-958 0-0106 0-0125 0-0100
TABLE 6
U=1—1x

Integration from x = 0-94 to Separation Point in One and Two Steps

Calculated from

(90847) Wt.13/806 XK.5 11/49 Hw.

1 step .2 step - h*-extrapolated formula (38)

Xy 0-9598 0-9591 0-9589

¥ Table of 8d¢p/sy
0-0 0-0000 - 0-0000 0-0000 0-0000
0-1 0-0044 0-0044 0-0044 0-0044
0-2 0-0176 0-0176; 0-0176; 0-0176
0-3 0-0395 0-0396; 0-0397 0-0396
0-4 0-0701 0-0704 0-0705 0-0703
0-5 0-1094 0-1098 0-1099 0-1098 =
0-6 0-1573 0-1579 0-1581 0-1579
0-7 0-2138 0-2145 0-2147 0-2147
0-8 0-2787 0-2796 0-2799 0-2799
0-9 0-3520 0-3530 0-3533 0-3536 .
1-0 0-4335 0-4347 0-4351 0-4356
1-1 0-5231 0-5244 0-5247

1-2 0-6205 0-6220 0-6225

1-3 0-7257 0-7272 0-7277
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