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SUMMARY 

This note describes a method for calculating according to linearised 
theory, the velocities produced by the thickness form of a sweptback wing 
having subsonic leading and trailing edges at supersonic Mach numbers. 
The method has been programmed for the Zebra computer and can cope with 
wings of arbitrary planform having arbitrary variation of both 
thickness/chord ratio and section shape across the span. At present, the 
method will only deal with wings having sharp leading edges. It is 
likely, however, that for round-nosed sections, if the true section is 
replaced by an equivalent sharp-nosed section, reliable results may still 
be obtained, at least aft of' about 0,04-c. 

Calculations have been made for the velocities due to thickness at 
Ed = 1.2 over four different wings. These are respectively, untapered, 
tapered in plan, tapered both in plan and thickness,'chord ratio and 
finally, tapered with a spanwise variation in section shape. In one 
case, a comparison with experimental results is given. 

The results for the fourth wing show that the changes in velocity 
produced by changes in thickness shape near the root are qualitatively 
similar at supersonic and at subsonic speeds. This is an important 
result and it follows that in certain applications, changes in section 
shape could be used to reduce the required amount of body waisting while 
in general, allowing the section shape to vary spanwise should give an 
added freedom in designing a suitable body shape to meet the requirements 
of the isobar patterns over both the upper and lower surface. 

Beplaces A.R.A. wind Tunnel Note No. 43 - A.R.C.23,976. 
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1. INTRODUCTION 

This note is a contribution to the already extensive literature 
dealing with the design of sweptback wings and the calculation of the 
pressure distributions over them in subcritical-type flow before any strong 
shock waves are present on the wing surface. In the past, the design 
cruising speed for most applications has been below M = 1.0 and even 
probably below say, M = 0.92. It has been shown however, e.g., in 
reference 1, that subcritical-type flow can be maintained over a sweptback 
wing at a supersonic free-stream Mach number provided that the wing sweep 
and thickness are chosen appropriately, provided that the body is shaped 
to avoid a loss in sweep on the isobar pattern over the wing near the root 
and provided that a suitable planform is chosen for tile wing tip region so 
as to eliminate the infinite singularity in the loading near the tip 
leading edge. A possible application for a sweptback wing of this type 
would be to a supersonic transport aircraft designed to cruise at M = 1.15, 
i.e., as fast as possible without producing a sonic bang. It follows that 
there is a need to develop methods for calculating the pressure distribution 
over such wing s at supersonic flight speeds for which the wing leading and 
trailing edges are still subsonic. 

For an infinite sheared wing - and hence possibly for the mid-semispan 
station of a finite sweptback wing - the extension of existing subsonic 
methods to a supersonic flight speed presents no problems. Also, relatively 
simple formulae are available, e.g;, in reference 2, for calculating the 
pressure distribution at the actual Gentre or root section. In designing 
the wing-body combination however to give a good isobar pattern over both 
the wing upper and lo+ver surface and to give reasonable flow over the body, 
it is not enough to know the pressure distribution at just these two 
stations on the wing. For example, in calculating the most appropriate 
body cross sectional shapes, one needs to know the velocities induced by 
wing thickness, camber and incidence at several stations across the span. 

In the past when dealing with the problem at subsonic speeds, the 
complete linearised solution in incompressible flow was obtained wherever 
possible3 but the method4 in common use for calculating the velocities at 
subsonic speeds over a wing of arbitrary design was built up by linking the 
solutions for the sheared wing and for the root and tip sections by 
interpolation functions that were derived partly by analysis of results 
obtained for particular cases by the full linearised solution and partly 
by analysis of available experimental data. This sort of approach was 
dictated initially by the fact that high speed digital ccnnputers were not 
generally available at the time and so simplified methods had to be 
developed which could be handled with desk machines. The position is now 
however completely different and so it seems appropriate to abandon this 
approach and to tackle the supersonic problem by trying to develop methods 
for calculating the velocities at any point over the surface of a wing of 
arbitrary geometry. It is still only practioable to use linearised theory 
and one must expect that as at subsonic speeds, comparison with experiment 
may later dictate some amendments to the theoretical results in order to 
improve on linearised theory. 

The present note is intended to fit in to this general framework. It 
describes a method for calculating for supersonic speeds, the velocities due 
to the thickness form of a sweptback wing with subsonic leading and trailing 
edges. It must be stressed at the outset that it does not deal with the 
inverse problem of finding the thickness distribution for a wing to satisfy 
a specified pressure distribution. This would be the normal design problem 
but at the moment, it has to be tackled by the present method, arriving at 
the required shape by an iterative approach. The method is designed to 
cope with wings with an arbitrary planform and with the thickness/chord ratio 
and with the thickness form varying spanwise in an arbitrary nmsnner, Al.1 
that is necessary is for the wing leading-edge and the spanwise variation in 
loo&L section slope to be expressible in polynomial form. The main 
restriction is that the method is so far applicable only to wings with 

sharp/ 
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shnrp leading edges. For round-nosed sections, it is suggested that a fair 
approximation can be obtained by modifying the section close to the leading 
edge to give an equivalent sharp-nosed section. A comparison with exact 
linearised theory for round-nosed sections has not yet been possible but the 
present approach should be regarded as merely temporary; ultimately, the aim 
will be to provide the exact linearised solution. The first part of the note 
is concerned with the evaluation of the double integral involved in deriving 
the potential from the second-order differential equation. Particular 
reference is made to the methods used for coping with the fact that the 
integrand becomes infinite at the point for which the potential is being 
calculated and along the forward Mach-lines through this point. It is worth 
noting here that as with the subsonic methods of references 3 and 4, the 
method initially gives the velocity distributions in the chordal plane but 
suggestions are made as to how then to derive the velocity distribution over 
the surface by using an approximation which strictly can only be justified for 
a two-dimensional wing of elliptical cross-section. The extension to the 
three-dimensional case seems however to be logical and there is no reason to 
doubt that the results should be reasonably plausible, The full method has 
been programmed for the Stantec Zebra computer and an indication of the actual 
computer programme is given in Appendix I. 

In the later part of the note, results calculated by this method are 
presented for four different wing designs. The first is a simple untapered 
sweptback wing for which a comparison is possible with the results of other 
calculations. This example therefore affords some check on the methods used 
and on the accuracy of the computer programme. The second wing is tapered 
in planform and for this case, comparisons are made with some experimental 
results. In the third example, the wing is both tapered in planform and in 
thickness/chord ratio while in the fourth example, the wing section shape 
varies across the span. This last example is intended mainly to show that 
the programme is capable of tackling such a wing and to illustrate that this 
design feature may prove useful at supersonic speeds in the same way as it 
has been in the past at high subsonic speeds. 

2. GENEFUL OUTLINE OF METHOD 

The starting point is to solve the three-dimensional linearised 
potential equation for inviscid, compressible supersonic flow: 

. . . . . . . . . (1) 

where p" = P-1 
0 

( x,y,z) are a system of rectangular coordinates such that x is measured 
in the free-stream direction, y spanwise and z normal to the chordal 
plane. The origin of the axes is at the leading edge of the centre section, 
vO 

is the free-stream speed and MO, the Mach number of the free stream. 

It is known that equation (I) has a solution of the form 

1 
# = -- 

lid- 

dx,y) dx dY 
. 

27c o- 
(x-x)2- p" (y-Y>” 

.  .  .  .  l .  .  .  (2) 

where q(X,Y) is the source strength at the point (X,Y) and where 

dx,y) = 2vo b/ad, y 
Y 

. . . . . . . . . (3) 

In arriving at this solution, one has made several of the usual 
assumptions of linearised theory for thin aerofoils, e.g., that the velocity 

increment/ 
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increment v 
X 

i3 small compared with the free-stream speed V 
0’ 

and that 
the vertical component, vs, is determined on the chordal plane, z = 0, 
instead of on the surface. Substituting (3) in (2) gives 

# I 

JI 

(dz/ax)X y dx dY 
- = -- 9 

J/(x-X)2 - $ (y-Y>" 
. . . . . . . . . ( 

vO 
7. 

0 

24 

Then . . . . . . . . . (4) 
0 0 

and similarly for v 
P 

0. 

The crux of the problem is to obtain a method for the accurate numerical 
evaluation of the double integral (2a). The surface o in the chordal plane 
over which this integration has to be performed is the portion of the wing 
area ahead of the forward Mach-lines through the point (x,y) at which the 
potential is required (sne Figure 1). In addition to becoming infinite at 
this point (x,y), the intogrand in (2a) also become3 infinite at points along 
the Mach-lines, 

(x-x) = + p (y-Y) . . . . . . . . . (5) 

through (x,y) and unless the aerofoil ha3 a sharp nose, it will become 
infinite at the wing leading edge since dz/dx equals infinity there. This 
last problem is not tackled in the present analysis which is restricted to 
sharp-nosed section3 but satisfactory method3 have been developed as described 
below in section 3 for dealing with the other singularities. 

After integrating and then differentiating by (4) to give the incremental 
velocity components, v 
given by XP and v o 

y/" 
o, the velocities on the chord-line are 

[ v(x;poJ 1 = (’ + :j +( :y . . . . . . . . . . (6) 
0 0 0 

On the wing centre-line, by symmetry, v 3/ V. = 0. Also for this section, one 
can convert to the velocity at a point on the surface, using the approximate 
relation 

This relation is rigorously true for a two-dimensional wing of elliptic 
section, i.e., for v = 0. 

Y 

If v' v. d is the velocity component at a point (x,0,2) on the surface, 

equation (7) can be rewritten as 
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- = 2 /$-I 
x90 

. . . . . . . . . (74 

For points off the wing centre-line, the conversion process is more 
complicated and there is some uncertainty in what is the appropriate value for 
the term in the denominator. The suggestions made below appear however to be 
sound in principle. The first step is to resolve the velocity-components, 
V and v 

X 
y into components parallel and normal to a line making an angle J, 

to the free-stream where 

tan J, = - v 
y/ 

vx . 

For an infinite sheared wing, $ = 4 and so then, the velocities are being 
resolved into directions normal and parallel to the wing leading edge. By 
analogy with the equation which would apply in that limiting case, one can 
write 

(1 +:j +(:j = sin' $+(Cos JI +:j 

0 0 0 

where 3 - is the oomponent in a direction making an angle $ with the 
vO 

free-stream. 

It would then seem appropriate to use the surface slope measured in this 
direction in the term in the dencminator of the expression for translating 
the velocity from the chordal plane to the surface. This slope, (dz/dx)', 
is given by the relation 

dz 
- - sin J1 

ay 

de 00s b#4 
= -* . 

dx 00s 0 

Then the equation for converting to the resultant velocity V' at a point 
(x,y,z) on the surface is as follows: 

( 
3 a co9 jf + - 

> 
= sir? q + 

vO 
a 

00s (+$) set 

For/ 
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For many applications, it should be possible to ignore 

equation (8) then reduces to 

and 

[iI + : j - sin? JI 
v' a 

( > 

3 
1 + -2 = sina $ + 0 

vO 

( 

dz a 
I+ - 003 (+jf) set c$ 

ax > 

. . . . . . . . . @a> 
which reduces 
sheared wing, 

to (7a) when 

( 
v’ 

1 +x 

vO 

a 

> 
= 

$ = 0. 

sin? $ 

When $ = 4, i.e., for the infinite 

[(1 +:>"- sir? $1 [(1 +:>"- sir? $1 

+ + 
az az a a 

I+(' > I+(' > 
- set # - set # 
ax ax 

. . . . . . . . . @b) 

is also ignored, equation (8a) reduces to 

*Is + co2 $ 
v’ 

22 = vO 
- cosa qf . . . . . . . . . (84 

vO 
dZ a 

I+ - 
( 

co8 (+-jr) set Q, 
ax ) 

As noted above, equations (8) with $ = 0 reduce to the correct limit for 
the centre section; also, with J, = Cp, they reduce to the same expression 
for the infinite sheared wing as that recommended in reference 4 for use at 
subsonic speeds. This was obviously desirable. Since we are merely 
concerned with wings with subsonic leading edges, the conversion to the 
velocity on the surface should obviously be the same for an infinite sheared 
wing irrespective of whether the free-stream Mach number is less than or 
greater than 1.0. 

The various steps in the calculation and the problems involved are 
discussed in more detail in the succeeding sections. 

3. ANALYTIC MANIPULATION OF THE DOUEKW INTEGRAL 

As mentioned above, the otential $ at an arbitrary point (x,y) on the 
wing is given by relation (2a P where the double integration is carried out 
over the area D, ahead of the forward Mach-lines through the point (x,y). 
Assuming that we are merely dealing with wings with sharp leading edges, i.e., 
that dz/dx remains finite within the range of integration (see section 6), 
the integrand merely becomes infinite at the point (x,y) and for points along 
these forward Mach-lines. The field of integration is therefore divided 
into five parts ci (i = 1, 2 . . . 5) as shown in Figure 1. cl is the 

area containing no singularity (assuming az/ax remains finite); c2 3 4 
9 Y 

are narrow strips of width 6 lying ahead of the Mach-lines and c5 is the 
part cd' these strips lying adjacent to the point (x,y) itself; c5 extends 
from (y-c) to (Y+E) - see Figure 1. 

Let/ 
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Let 

then 

In area o,, 

(al;/ax)x,y 
4(x-X)2 - p (y-Y)" 

= F (X,Y) 

9 I 1 
A = -- = -- F (X,Y) dX dY 
vO 

?I x 
Q 

I, = F dX dY 
61 

= i i % %Fdx dY 

'a x* 

.  .  .  .  .  .  .  .  l (2b) 

. . . . . . . . . (9) 

where the limits of integration (Ya,Yb; XatXb) are as follows: 

Ya = ;; 
c 

whichever quantity has the smaller modulus 
the Y-coordinate of' the point of intersection 
(A on Figure 1) of X = ft (Y) and (x-X) = @(y-Y) + 6 

Yb = 
c 

ii: whichever quantity has the smaller modulus 
the Y-coordinate d the point of intersection 
of x= f; (Y) and (x-X) = - p(y-Y) + S 

‘a = fL (Y) 

fT (y) 
OR whichever quantity has the smaller modulus 
x-p (y-Y) - 6 

x = fL (Y) is the equation cf the leading-edge shape, with 

fT, (Y) for Y > 0 and f; (Y) for Y < 0. 

x = f, (Y) is the corresponding equation for the trailing edge. 

It should be noted that the integration with respect to X is 
performed first, contrary to methods which are developed frcm the theory for 
a two-dimensional aerofoil. This is to simplify the treatment for a wing 
of arbitrary planform; it is clear that a wing with a curved leading or 
trailing edge can be dealt with quite simply provided that the equations 
fL (y> ad fT (y) can be expressed readily, e.g., in polynomial form. 

Since there are no singularities in ol, relation (9) can be integrated 
between the specified limits by standard numerical procedures as described 
in section 4. 

Turning/ 
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Turning now to the areas @2 . . . 5, the value of (&/a~), Y in these 
s 

areas is taken as constant and equal to the value at (x - ply - Y/ - $6, Y) 
when carrying out the first integration with respect to X. 

Let x0 = x - ply - Yl - s/2 

Then for the areas c2, u 3, u,+ (Figure I), the first integral is solved 
as follows: 

Y-YI ax 

ydy(-s Jb4a -p” (Y-V 

0’ 

y [ ; Oosh-l I ,(: : :, I 1-1;;; 
- -9 

* 
; according to whether 

x- X 

P(Y - y> : O 

c 6 
cash* I + 

P(Y - y> 3 
. . . . . (IO) 

Hence for regions cr2 ~ 4 
9 9 ¶ 

I~,,,,& = p9’p4 ( z )xo,y cash-' [ 1 + ,I,"- y, ] dY 

2,394 

. . . . (11) 

where the limits of integration vary according to the 
region in question. 

yL = y+c 
4 

and Yv = 
4 c Lit whichever quantity has the smaller modulus 

Y-coordinate of point of intersection of 
x = f+L (Y) and (x - X) = +(y - Y) + 6 

For/ 
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For 099 0, there are two separate cases depending on whether the 

Mach-line (x - X) = /?(y - Y) -I- 6 intersects the x-axis ahead of or 
behind the wing trailing edge. If this point is (xc, 0) - see 

Figure I, point C - the two cases for ~2, u3 depend therefare on 
whether 

xc > 1 or xc<1 

(since in all the analysis, the wing plan geometry is non-dimensionalised 
by the wing centre-line chord). i.e., case (a) : 1 - (x - p y - 6) < 0 

case (b) : 1 - (x-py4)20 

In case (a), 

Y, = iii r whichever quantity has the smaller modulus 
L2 k Y-coordinate of point of intersection of 

X = f;l (Y) and (x - X) = P (Y - y> -I. 6 

Yu2 = Y-coordinate of point of 
and (x - X) = 

YL = Y-coordinate of point of 
3 and (x - X) = 

intersection of X = f$ (Y) 

P (Y - y> + 6 

intersection of X = f@jj (Y) 

P (Y - y> + 6 

As before, f; (Y) is the equation of the trailing edge for Y > 0 

and fi (Y) for Y < 0. 

In case (b), regions 2 and 3 merge to become 023 and then 

c 

-s 
YL = OR whichever quantity has the smaller modulus 

23 Y-coordinate of point of intersection of X = ft (Y) 
and (x - X) = /3 (y - Y ) + 6 

yU = y-s 
23 

This/ 
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This leaves region us around the point (x,y) itself. For this area 

= i"" ( $,, 

Y-E 
0’ 

y oosh-' [ 1 + B,y:Y, -j dY 

CL -2 ( $,, ~ y 
-2 9 

r oosh-l [ 1 + pty:yj ] d (Y-Y) [Y > 4 

= -2E~x~~6,yK(y-y) cash-1 C' +p(ly) 31" 
Y-E 

+ 
I & 

bdb-Y> -, 
?2/3s(y-Y) + B 1 

6 
I 

+ 1 [&a + sa - 61 
BE B I 

. . . . (12) 

= 2 ( $b@,, [ E aosh+[ 1 + 

The total expression for C#I is then given by 

cp 
-= - 1 [I 
vO 

, 
71 

+ I2 + 13 + I4 + Is] . . . . 03) 

or - 1 [I i + I2f '4 + '5 1 . . . . (13a) 
‘lc 

acoording to whether 1 - (x - &y - 6) < 0 

or 30 

with I, given by (91, 12, 13, Ib b (11) and I5 by (12). 

For/ 
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For a point on the wing centre-line, i.e., a point (x,0), 

i-(x-py-6) 2 0 

and equation (13;a) reduces to 

U40 aZ 

+[i 2 - cash-1 

ax Y c 

6 

l+- - 

Py 
00’ 

+( k),,, [ c cash-' [ 1 + i] +I l&-i-3-s 
P [ III 

. . . . (13b) 

c 
+x 

where Ybo = OR whichever quantity has the smaller modulus 
the Y-coordinate of the point of intersection of 

X = fi (Y) and (x-X) = - pY - 6 

f, 0) 
OR whichever quantity has the smaller modulus 

x+py-6 

X 
%O 

= 0: 
c 

whichever quantity has the smaller modulus 
Y-coordinate of point of intersection of 

x= f; (Y) and (x-X) = pY + 6 

and X 00 = x - py - 6/2. 

It is worth noting at this point that a relatively simple expression 
can be derived for the supervelocity increment, vx, at points on the 
centre-line of a wing, tapered in planf'orm but having the same section 
shape throughcut the span: 



L- 
I - 

tan Gx tan $X + Jtar?#X - p 

Jta2$ - P 
log, 1 ax . . . . (14) 

P 
In the first term, dz/dx and $ are both taken at the point (x,0); in the 
second term, both are functions of X. This expression is only valid if 
the centre-line section lies ahead of the Mach-line from the leading edge 
of the wing tip. 

For the even simpler case of an untapered wing of sufficiently high 
aspect ratio, equation (14) reduces to 

V 2 1 
X - = -- 1% 

vO 
7r; CJ tan?+-@ e ( tan + + Ita& - #@a P >I(3 dx 

x,0 

. . . . (14) 
For wings naving a more complex planform or thickness distribution, one has 
to revert to a numerical solution of equation (1%). 

4. COMMENTS ON NUMERICAL EVALUATION OF + AND &#/8x 

This section is concerned with the numerical methcds used for the 
evaluation of (p and acp/ax, the accuracy achieved and the time required 
on the Zebra computer. It should be emphasized that "accuracy" here 
refers merely to the numerical processes; the accuracy of the final results 
depends of course on other factors such as the assumptions of the linearized 
theory used in deriving the integral expressions in section 3 and the 
validity of the method used for transferring from velocities in the chordal 
plane to those on the wing surface. Also, if the wing section has a rounded 
leading edge, there is the practice of replacing the true section by an 
"equivalent" section having finite az/ax throughout. All these factors 
will be borne in mind when assessing the results of the calculations for 
specific examples in section 5 but for the present, we are merely concerned 
with the numerical methods used in deriving # and &#/8x. In this context, 
the accuracy of the computed results depends mainly on three faators: the 
choice of values for the small quantities 6 and E, the methods chosen for 
the numerical solution of II and the detail in which the surface is . . . . 4 

mapped, e . g., the number of integrating strips and the number of points far 
which values of 4 and a$/ax are obtained. 

4.1 Choice of values for 6 and E 

In practice it is found that the choice of suitable values for the 
small quantities 6 and E (Fig. 1) is defined within fairly close limits. 
On the one hand, if 6 and E are too small, the values obtained for 1, 
are inaccurate since the integrand becomes large as (X,Y) approaches (x,y). 
On the other hand, an upper limit on the possible values of 6 and E is 
set by the derivation of equation (12) for I 

5 
for points in the 

vicinity of the leading edge, This is illustrated by the sketch in 
Figure 2. For given values of 6 and E, the point (x,,y) defined as 
shown in Figure 2 is the nearest point to the leading edge for which 
relation (12) for I remains valid. For the points closer to the 
leading edge, the In its of the area of integration, c5, would no longer 3 
apply. From Figure 2, it will be seen that 
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x 
0 

= e tan $, e /3E + 6 

If we put c = 6 for convenience, 

X 
0 

= e (tanGL+P +I) 
X * 6 0 I.e., = & = -- 

tan #h + B + 1 
. . . . (15) 

Hence, if the aim is to obtain accurate values of 4 and &#/ax at points 
distant only x0 downstream of the leading edge, the maximum permissible 
values of 6 and E are given by (15). 

While it is true that in practice, a much more serious consideration 
near the leading edge may be inaccuracies resulting from the relatively 
large values of az/LJx of either the true or "equivalent" sections, 
this is really no justification for introducing another source of error 
and so it seems fair to take note of condition (15) when choosing values 
for 6 and E. 

From experience gained in computing the results for the examples of 
section 5, it seems that in general, reliable values of I, can be 
obtained if 

6 E = = 0.001. 

For M = 1.2, $JL = 55", using these values with equation (15) implies 
that results can be obtained‘for points that are not nearer the leading 
edge than 0.005 (all these values are in terms of the chord). It should 
be pointed out however that the values which are acceptable for 6 and 
E in any 

7 
iven case depend on the values of 

d2z x',y')/d? 
@z/d? and d?z/dx dy, 

since 
(X-&Y). 

is replaced by its value at the particular point 
This means that strictly, the values of 6 and e should 

be reduced as one approaches the leading edge where dz/dx will be changing 
more rapidly with x and y. This is therefore yet another reason why 
the results of calculations by the present method may be somewhat in error 
for points very close to the leading edge. Indeed, it would appear that 
if the velocities are required for points closer than 0.005, it may be 
very difficult to strike a suitable compromise for the values of 6 and a. 

4.2 Numerical methods 

The programmes originally written for the Stantec Zebra computer used 
both the Weddle and Hardy six-strip quadrature formulae, combined in the 
following manner: 

d = + 5 +I$ 

where +w = value of # obtained from the Weddle 

and #H = value of (p from the Hardy formula. 

formula, 

. . . . (16) 

using the expressions in section 3, one evaluates r#/V but in 
9 mo is omitted for convenience). This weighted m&an of 4 

and $JH is equivalent to the most accurate six-strip equal-interval formu a, I 
but uses simpler coefficients. Extensive tests of this programme were made, 
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including the calculation of $J for the untapered wing example quoted in 
section 5.1. When the values of + were obtained merely for points at 
intervals of 0.1~ along the chord at four spanwise stations, the method 
appeared to be satisfactory. Subsequently, however, calculations for 
points spaced more closely along the chord suggested that the $-function 
was not smooth. As might be expected, this meant that the variation of 
V 

x 
= a&/ax along the chord was even more erratic and at some points, the 

changes in a+/ax appeared to be discontinuous. Some of these apparent 
discontinuities could be genuine because they could correspond to the 
Mach-wave disturbances being propagated from the wing-root trailing edge 
or wing-tip leading edge, etc., but such explanations would not serve in 
the majority of cases. It seemed therefore that many of the erratic 
changes were spurious and were probably due to rounding errors in the 
numerical integration. Accordingly, the programme was rewritten using 
Gaussian quadrature which is the most accurate available for a given 
number of points arranged at an optimum non-equal spacing. In addition, 
the number of points in each integration strip was increased to sixteen, 
giving the following formula: 

x+h 

J g(x)ck = 
X 

i=l 
. . . . . . . . . (17) 

where a i and x i are tabulated in reference 5, h is the length of one 
integration strip and there are "n" such strips between the limits of 
I,, I*, Iz3, I3 and I4 as set out in section 3. 

4.3 Accuracy and computer time 

Having established that relation (17) appears to provide the most 
reliable method of performing the numerical integrations, increasing 
accuracy should result from increasing "n", the number of integrating 
strips - but at the expense of computer time. With the present Simple-Code 
programme for Zebra, n = 10 has seemed to be a reasonable compromise. Cheeks 
made by doubling the number of strips, gave in general a change of t5 in the 
fifth significant figure for + and thus using n = 10, #J should be accurate 
to four significant figures. 

The primary aim of course is to obtain values of &#/8x and the values 
of + have therefore to be differentiated. This could be done by the simple 
first difference formula: 

w (p (xi) - # (xi-q) ._ - =: . . . . . . . . . (18) 
3X x i '* xi-l 

or preferably by calculating second differences. The accuracy of a$/ax 
thus depends not only on the computed values of $J but on the interval 
h = (xi - xi-, ) between the points at which + has been determined. A 

small interval tends to accentuate the rounding errors inherent in deriving 
@ by relations such as (17) and a large interval increases the inaccuracy 
of the approximation (18). In general, in making the calculations 
discussed in section 5, h was taken as 0.1 except for regions where &#/4x 
was changing ra idly along the chord; in these regions, h was reduced to 
0.05. If dxp were linear with x, as it would be near the maximum 
thickness, the maximum possible error in &#/ax corresponding to an error 
of +0.00005 in I#(x) would be +O.OOl. This could represent about 25% of 
a&x. The actual results in Figures 4, 6 and 10 for the different 
examples calculated do not seem to show a random variation as great as this 
and so the values may be pessimistic. On the other hand, it must be 
admitted that it is somewhat of an anticlimax to resort to these methods 
for obtaining &$/8x and in fiture, it may be preferable to programme an 

analytic/ 
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analytic expression for &#/8x rather than an expression for $J. This 
should improve the accuracy and also reduce the computing time involved. 

To sum up, using the present method, a reasonable conclusion for a 
typical wing being designed for H = 1.2 is that use of a IO-strip, 
16-point Gaussian integration sh<xlld give an accuracy of the order of +5$.* 

The time required on the computer depends not only on the number of 
integrating strips but also on huv complex is the wing geometry and on the 
spanwise and chordwise position at' the point at which # is being 
oaloulated. The existing Simple Code programme for Zebra, using the 
IO-strip Gaussian integration, is suoh that the times required to compute 
values of 4 at different positions on the tapered, constant section wing B 
in seation 5.2 were as follows: 

Centre section 

15 minutes at x/o = 0.1 to 2 hours at x/c = 1.0, ' 

rl = 0.5 

24 hours at x/c = 0.1 to 6 hours at x/c = 0.8. 

If the number of integrating strips were increased to 20, the times would be 
increased by a factor of about 4. More complex wings such as wing C in 
section 5.3 require slightly longer times but this factor should not exoeed 
I .5. 

Rewriting the programme in Normal Code should reduce the times to 
possibly l/4. of those quoted. Ideally, however, the change to Normal Code 
should be used to give a sieeable reduction in the time, oombined with an 
improved accuracy through an increase in the number of integrating strips. 

These computer times are obviously very lengthy. It was possible to 
obtain the results for the four examples disoussed below in section 5 by 
allowing the computer to run all night on this programme. Clearly, however, 
if any major amount of' work was required in a short space of time, the 
programme would have to be transferred to a faster computer. This is a 
particularly important point in view of the fact that one is calculating the 
velocity distributions for a given wing geometry and that therefore, to 
design a wing to give a prescribed pressure distribution - the normal design 
problem - one has to adopt an iterative approach calculating the pressure 
distributions for a range of wing shapes. Perhaps the more important 
conclusion is that these computer times illustrate the drawback of 
performing a double integration numerically. It is quite feasible that the 
times would be reduced by an order if one of the integrations were performed 
analytically and if therefore the computer was only required to carry out a 
single numerical integration. It is hoped to adopt this approach in future 
when deriving a method for the general case including wings with round 
leading edges. This point is referred to again in section 6. 

5. CALCULATED EXAMPLES 

Caloulations have been made for four wings. Their geometry is of 
steadily inoreasing complexity: the first is untapered and has the same 
section shape throughout the span; the second is tapered in plan; the 
third is not only tapered in plan but also has its thickness/chord ratio 
varying aoross the span while the fourth also incorporates a spanwise 
variation of se&ion shape. 

The/ 

- - - - - - - - I - - - - - -_--- - - - - - - - - - - - -  _________-___--_----------------------------- 

*Further experience has shown that n = 5 integrating strips should be 
sufficient in most oases and therefore the computer times quoted in this 
section can be taken as being pessimistic by a factor of about 3. 
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The plan dimensions of the wings (e.g., in Figures 5, 8) are made 
non-dimensional in terms of the centre-line ohor&? For the tapered wings, 
the parameter TJ defining the spanwise position of a section is related to 
the semispan of the corresponding arrowhead wing, i.e., for the tip section 
of the true wing, q < 1.0. 

Wings 2-4 were speoified as wing-body oonfigurations but for the 
purpose of the present oalculations, the body-side was assumed to act as a 
full reflection plate and so the pressures were computed for the nett wing, 
assuming the root section was the oentre plane. 

In the equations for the surface slopes (&/a~), y for the various 
wings, z and x are assumed to be non-dimensionalisid with respect to the 
local chord with x = 0 at the local leading edge and x = 1 at the local 
trailing edge. This ma appear obvious but is stressed here sinoe except 
when determining (az/dx X y, 3 x is non-dimensionalised with respect to o. 
rather than o and x = 0' at the apex of the wing. 

5.1 Untapered 55' aweptbaok wing (wing A) 

Calculations were first made for an untapered 55' sweptback wing having 
an aspect ratio of 2.0 and a thickness/chord'ratio of 0.0%. This was 
chosen as the first example beaause values of the velocity increment, v XP o, 
for this wing had already been obtained analytically by Weber at R.A.E. 
(Equation 14.a gives the analytio expression for the velocities on the centre 
line; the relations are considerably more oomplioated for se&ions off the 
centre-line.) 

For this wing, $L = #T = 55O, o. = 1.0 (by definition) and the semispan, 
9 = 1.0. The wing section was a sharp-nosed se&ion A having the same 
maximum thickness position (0.310) as the R.A.E. 101 shape and having the 
same shape as R.A.E. 101 aft of the maximum thiokness. It differs from the 
R.A.E. 101 shape ahead of the maximum thiokness, being defined by the values 
of dz/dx given in Table I and Figure 3. It will be seen that very nearly, 
the extreme forward part of the seation is a wedge. This se&ion was ohosen 
for the oalaulations beoause results for this wing with this seotion had 
already been obtained analytioally at R.A.E., using equations similar to (14). 
The purpose of this example therefore was primarily to test the aoounacy of 
the computer programme. 

For the oomputation, one has to express (dz/dx) as a polynomial in x 
where x is the distance along the loaal chord expressed as a fraction of 
the looal ohord, i.e., x P 0 at the local leading edge and x = I at the 
local trailing edge. For this shape A and a thiokness/ch=d ratio of 
0.054 as for the present example, suitable equations were derived as follows: 

For O<x<O.31, 

dz 
-= -35.995 2 + 39.806 zd' - 24.4689 2 + 9.2168 x? - 2,1854J+ x + 0.25512 
dx 
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For 0.31 s X < 0*7& 

a2 
-= 1.3425 x4 - 3.2680 x? + 3.1567 f - 1.48047 x + 0,24055 
dx 

For 0.76 d x < 1.0, 

da 
-= - 0.04798 . . . . . . . . . . (19) 
dx 

Calculations were made for two stations: TJ = 0 (the centre section) and 
'1 = 0.3 and for MO = 1.2. The results are compared in Figure 4 with those 
obtained analytically by Weber. It will be seen that extremely good 
agreement is obtained for both stations. Incidentally, the values of v P o 
as plotted are those derived for the chordal plane; they have not been 
aorrected to give the velocities over the surface. 

The agreement shown in Figure 4 represents an important step forward. 
It provides a useful check that the lllethods proposed for coping with the 
singularities along the Mach-lines and for performing the numerical integrations 
are satisfactory. An untapered wing of constant section shape does not of 
oourse enable one to check all the mathematics but if any fundamental errors 
were being made, they should have been apparent in the results for even this 
simple example. It should be stressed however that the agreement shown in 
Figure 4 provides no check on whether the basic assumptions of the linearised 
theory are valid but it is encouraging to find that the solution for (p is 
quite well behaved even far forward on the sections and that v V. appears 
to be varying in a manner that is physically plausible. d 

5.2 Tapered sweptback wing (Wing B) 

Calculations were next made far a tapered sweptback wing (B) with a 
thiokness/chord ratio of 0.06 for which experimental data have been obtained in 
the 8 ft x 6 ft transonio tunnel at R.A.E. Farnborough. The plan geometry of 
this wing is shown in Figure 5. It will be seen that the basic leading-edge 
sweep is 59.25* but outboard of about 0.7 x gross semispan, the leading-edge 
sweep is increased to form the usual sort of curved-tip shape. The trailing- 
edge sweep is 40' throughout. 

As noted earlier, the calculations have to be made for the nett wing 
assuming that the body side acts as a full reflection plane. For convenience, 
the wing root chord at the body side is taken as 1.0 and the plan geometry is 
non-dimensionalised in terms of this length as shown on Figure 5. 

The non-dimensionalised co-ordinates of the leading edge over the curved 
part outboard of station Y = 0.5417 are given in Table II. The polynomial 
that was fitted to these values by the method of least squares was 

fL(Y) = 57.5232 p - 109.9240 P + 71.4511 Y - 14.6769 . . . . . . . (20) 

Inboard of Y = 0.5417, 

f#) = 1.68085 Y l . . . . . . . (2Oa) 

The wing section on the model tested at R.A.E. was the true R.A.E. 101 
shape with a thickness/chord ratio cd? 0.06. As already explained, the 
present method has not been adapted to cope with an infinite value of dz/dx 
at the leading edge and so the calculations were made for the approximate 
shape B as defined by the values of dz/dx in Table I and Fi@.re 3. It 
will be seen that this shape B has surface slopes that are very close to 
those of the true R.A.E. 101 shape. Strictly, the differences extend back 
to 0.10 but in fact, are quite trivial aft of 0.05~ as can be seen from 
Figure 3(a). 

The/ 
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The polynomials used to define this shape B are as follows: 

For O<x<O.Ol, 

a2 
-= 1.10933 - 74.687 x, 
ax 

For 0.01 < x < 0.05, 

- = 128941.6 x4 - 19796.65 ~8' + 1171.566 f - 34.4294 x + 0.60811, 
ax 

For 0.05 s x < 0.3, 

a2 

-= -285.355 x5 + 307.206 x4 - 133.6010 2 + 29.7481 z? - 3.79101 x + 0.27635 
ax 

For 0.3 6 x < 0.76, 

a2 
-= 1.6504 x4 - 3.9679 I? + 3.76859 x? - 1.73363 x + 0.27821 
ax 

For x z 0.76, 

a2 
-= -0.05373 . . . . . . . . . . (21) 
ax 

Chordwise distributions of v' P o were calculated for MO = 1.2 for 
four stations across the span: q = 0.108, the body side, i.e., the effective 
centre section, and q = 0.216, 0.323, 0.431 (see Figure 5). In addition to 
calculating the velocity distributions for the shape B regarded as an 
approximation to the true R.A.E. 101 shape, calculations were also made for 
the shape A used above for the untapered wing A. Results af the calculations 
for these two seetionsshapes are compared in Figure 6. It will be seen that 
for the root section, there is little difference between the two sets of 
results but further out on the span, the differences are significant not 
merely near the leading edge but back to and even beyond the maximum thickness 
position. Qualitatively, there is nothing surprising in this. Figu= 7 
shows for example that the comparison is very similar when one calculates the 
velocity distribution over these two shapes in two-dimensional flow at M = 0. 
Figure 7 also gives the velocity distribution for the round-nosed R.A.E. 101 
section as calculated by the Weber method as set out for example in 
reference 4. This figure shows that the apprczimate shape B gives results in 
very close agreement with those for the true round-nosed section, even as far 
forward on the chord as 0.05~. A similar comparison fczr supersonic speeds 
is not yet available and so for the moment, one has to take this evidence at 
M = 0 as providing some reassurance that it is fair to compare the calculated 
results for shape B with those measured experimentally on a wing having the 
true R.A.E. 101 shape. 

This comparison between calculated and experimental results is given in 
Figure 8. The measured values were obtained from tests in the 8 ft x 6 ft 
tunnel at R.A.E. Farnborough at both R = 0.75 x IO6 and 1.5 x 106 (based 
on the wing mean chord) and data are shown both for tests with natural 
transition and alternatively, with transition fixed artifically at 0.15~. 
It should be added that the measured results for the centre section were 
modified before being plotted so as to allow for the effects of the forebody. 
This was done by subtracting two sets of experimental points, viz., circular 
unwaisted body plus wing and circular unwaisted body alone. It was shown 
experimentally that the contribution d the forebody to the pressure 
distributions at the other stations was negligible. The results at the two 
test Reynolds numbers were the same and so no distinction is drawn when 
plotting the points. 
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It will be seen that over the forward part of the chord (say, O.l-0.2c), 
the agreement between calculation and experiment in Figure 8 is reasonably 
good particularly for the centre section but that further aft, the measured 
supervelocities lie appreciably below the predicted values. The agreement 
for the centre section is certainly as good as that shown in reference 6 
for an untapered wing. 

The discrepancies between the measured and calculated values over the 
rear part of the section could be at least partly due to the effects of a 
thick boundary layer. Admittedly, as noted above, there is no difference 
between the results obtained at R = 0.75 x 106 and R = 1.5 x 106 but this 
does not necessarily mean that boundary layer effects are insignificant. 
In tests on similar wings in the A.R.A. transonic tunnel at even 
R = 3.5 x 106, it was shown that the addition of some vortex generators 
could materially alter the velocities over the rear part of the wing. This 
result combined with the evidence of some oil flow photographs confirm that 
in the absence of the generators, a relatively thick boundary layer may tend 
to form over the rear part d a wing with a highly swept trailing edge. 
Tests are now being made in various tunnels to show whether this 
characteristic is influenced by a large change of Reynolds number, e.g., 
from R = 1 xl@ to R= 15 x106. As regards the aft part of the sections, 
therefore, nothing definite can be concluded from the comparison in Figure 8 
as to whether the theoretical results are valid or not. It is however a 
little disturbing that as y increases, the region along the chord where 
there is the most significant discrepancy between the measured and calculated 
values tends to move forward, e.g., for ?J = 0.22, it is aft cd? the maximum 
thickness; for q = O.32,‘it is near the maximum thickness and for TJ = 0.43, 
it is ahead of the maximum thickness. This fairly systematic trend suggests 
that possibly there is some feature in the real flow which is not being 
represented oorrectly within the limitations of linearised theory. It would 
however be wrong to exaggerate the discrepancies. For example, the maximum 
discrepancy in v' P o at a given (x,y) rarely amounts to more than about 

0.01. Also, it should be noted that where the discrepancies occur, the 
variation in v' Jv o with y is usually relatively rapid. This means that 
an alternative way of interpreting the results is to say that the measured 
distribution for q = 0.43, for example, corresponds quite closely with what 
would be calculated for about ?J = 0.39. This difference in ?J amounts to 
about 0.06 x semispan; looked at in this light, the discrepancies may not 
be too important for a practical application. 

Quite apart from the possibility of viscous effects in the measured 
results, there are several possible weaknesses in the theoretical approach 
which could be leading to these discrepancies. For example, the fact that 
a fairly small change in the effective spanwise position could bring about a 
considerable improvement suggests that the assumption that the actual 
wing-body combination can be treated as a simple net-t wing for the purposes 
of these calculations may be partly responsible. Also, one must not lose 
sight of the fact that the assumptions of linearised theory and that the 
flow is subcritical may just not be good enough for these calculations for 
M = 1.2. It has long been known for example that use of the simple 
linear-theory Prandtl-Glauert transformation for estimating the pressures 
over a wing at high subsonic speeds is not really accurate enough when judged 
in comparison with measured experimental results. In addition, the various 
uncertainties near the leading edge will all tend to become rather more 
significant as y increases, e.g., the fact that the R.A.E. 101 section has 
been replaced by shape B (although Figure 7 is reassuring on this point), 
the fact that one has to transfer from the velocities in the chordal plane 
to the velocities over the surface by relations (8) and the fact that the 
choice of suitable values of 6 and E becomes more critical near the 
leading edge - see section 4.1. It seems quite clear however that none of 
these points in themselves could be fully responsible for the discrepancies. 



- 22 - 

It would however be quite wrong to over-exaggerate the discrepancies 
and it is too early to draw any conclusions as to the true explanation. 
The important point at the moment is that one should be greatly encouraged 
by the general similarity in shape of the measured and calculated distributions 
and in their variation with spanwise position. There is no doubt that the 
calculated results are sufficiently accurate for the method to be extremely 
helpful in designing suitable wing shapes. 

Before leaving the discussion of Figure 8, there is one interesting point 
of detail in the distributions for q = 0.43 that calls for comment. The 
distribution does not appear to be particularly smooth near 0.35~. In earlier 
calculations on the computer, this trend was even more noticeable and the 
calculation of values of # at a number of intermediate points only made 
matters worse. It was then found that the relations similar to (20) that 
were being used for fh(Y) inboard and outboard of Y = 0.5417 did not give 
continuity in the first derivative of fh(Y) at this point. The numerical 
coefficients in equation (20) were then modified to the values given on page 16 
in order to provide this continuity and the calculated velocity distributions 
were then as shown in Figure 8. The interrelation of the velocity distribution 
near 0.35 - 0.4~ at T = 0.43 with the shape of the leading edge near the 
start of the curved tip can be explained by the fact that the Mach-line from 
this point on the leading edge crosses the q = 0.43 station in that particular 
region. It seems therefore that to obtain smooth velocity distributions 
across the chord at any station, one must make sure that the equation to the 
leading-edge shape is continuous at least to the first order and probably to 
the second. It is clear that irrespective of what happens in the real flow, 
the geometry has to be defined very carefully in order to obtain accurate 
results by the present method. The real flow would probably be less 
sensitive to any discontinuities in geometry but even in the real flow, a 

, Mach-wave disturbance or a shock wave would be propagated from any actual 
kink in the leading-edge shape. 

The discussion has concentrated on whether the calculations have given 
accurate results or not. It is tempting to compare the results in Figures 4 
and 6 for the section shape A to see what have been the effects of taper 
(and the associated changes in local sweep) on the velocities due to thickness. 
This comparison is however somewhat clouded by the fact that there have been 
simultaneous changes in the aspect ratio and thickness/chord ratio. At the 
root or effective centre section, the maximum velocities are obtained at about 
0.8~ for both wings but are abou t 2% higher for the tapered wing. Its 
increased thickness/chord ratio could account for about 1%; the remaining 
1% is presumably an indication that the lower effective sweep near the 
trailing edge of the tapered wing (40° rather than 55O) has been the dominant 
factor. Further out on the wing, to judge from the results for q = 0.3 for 
the untapered wing in Figure 4 with those for '1 = 0.323 for the tapered 
wing in Figure 6, the maximum velocities appear to be slightly higher on the 
tapered wing. It must be stressed ho,vever that one should not draw any 
conclusions from these results regarding the merits or otherwise of tapered 
versus untapered wings. The choice would obviously depend considerably on 
structural considerations but quite apart from this, even the aerodynamic 
arguments would depend on the flow produced when body, lift and warp effects 
are included. Any conclusions based on thickness effects alone could be 
very misleading. 

5.3 Tapered sweptback wing with spanwise variation in thickness/chord 
ratio (wing C 

The next example extends the scope of the calculations to include a 
further factor: a spanwise variation in the thickness/chord ratio. As 
explained in reference 7, it is likely that in practice, tapered sweptback 
wings will be designed to have a variation in CL across the span. For 

such designs, the thickness/chord ratio would have to be varied across the 
span in order to obtain a satisfactory isobar pattern over both the wing and 

lower/ 
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lower surfaces under the desigfl conditions. A tapered sweptback wing with 
this feature has been designed by Newby at R.A.E. Farnborough for tests in 
the 8 ft x 6 ft transonio tunnel. This design was therefore selected as the 
next example on which to try the present method. The velocities due to 
wing warp and incidence at the design CL had been calculated at the R.A.E. 
and also a suitable body shape had been designed. In designing this body 
shape; it was assumed that the velocities at the body side due to wing 
thickness could be estimated on the basis of the local sweep at any chordwise 
position and the local thiokness, i.e., the effects of the spanwise variation 
in thickness/chord ratio were ignored and the effects of planform taper were 
assumed to be related merely to the variation in sweep from leading to 
trailing edge. Calculations of the velocities due to thickness using the 
present method were required to obtain the velocities due to thickness at 
other spanwise positions so that the full isobar pattern over the wing 
surfaces under the design conditions could be calculated and compared with 
experiment. 

The plan geometry of this wing C is shown in Figure 9. It is broadly 
similar to the planform of the previous example considered in section 5.2. 
At the wing root, the leading-edge steep is 60' while the trailing-edge 
sweep is 40' throughout the span. Once again, the layout is really a 
wing-body configuration but the present calculations are made for the exposed 
nett wing treating the side of the body as the wing centre plane. The local 
chord c, was defined by the relation 

C = c c PI (1 - d 

= 1.11114 PI (1 - q) . . ”  .  .  .  .  .  .  (22) 

where c 
C 

is the centre-line chord of the gross wing, and rl is the 
spanwise aoordinate based on the corresponding gross arrowhead wing. Values 
of the parameter p, for a series of values of rl are given in Table III. 
A standard programme using the method of least squares was used to fit a 
polynomial to the values of cl1 
the true wing); 

out to Al = 0.7 (i.e., nearly to the tip of 
outboard of this, linear interpolation was used. The 

resulting equations for the trailing-edge and leading-edge shape are as 
follows: 

fT(y) = I + 0.8391 IY 1 

fL Cy) = fT(Y) + 1.11114 p, (1 - d 

where ,+ (I - q) = 1.0008 - I. 3336~ + 4.7076ri) - 21.7559q3 + 40.1944r4 

- 26.2304q5 

for q < 0.7 

and 
0.7071 - 77 

p1 (I - q> = 0.1538 1 for rj > 0.7 
0.007071 

rl = o.? + 0.8036 IYI . . . . . . . . . (23) 

Values of the thickness/chord ratio at different stations across the 
span are also given in Table III and the method of least squares was again 
used to give the following polynomials for the variation of t/c across the 
span: 

For q < 0.5, 

t/c = -0.528073 - 0.397691~~ + 0.0653Wrjd - 0.593439? + 1.178682q4 
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For 0.5 6 q G 0.65, 

t/c = -1.538312 + 12.428499"rl - 26.67075&-f + 18.69164&f 

For 0.65~~~ 

t/c = 29.464718 - 90.270769q -I- 70.093665$ . . . . . . . . . . (24) 

The section shape on the model was R.A.E. 100 which for a thickness/chord ratio 
of 0.10 is defined by the equation 

For O<x< 0.75 

and for 0.75 6 x 

. . . . . . . . . (25) 

The corresponding 

For O<x< 

dz 
- = 
dx 

and for 0.75 4 x 

< 1.0, 

2 = 0.085564 (1 - x) . 

equations for dz/dx are: 

0.75, 

0.148188 
c 

; [9 - 42x + 32x?][x (1 c x)]-2 

< 1.0, 

dz 
- = -0.085564 .  .  .  .  .  l .  .  .  (26) 
dx 

To eliminate the infinite value of (dz/dx)x=O, the aerofoil shape was modified 
ahead of x = 0.005, according to the following equation: 

For 0 < x < 0.005, 

dz 
-= 3.92397 - 1052.2082x + 94525.32. . . . . . . . . . (27) 
dx 

It is worth noting that the true R.A.E. 100 section shape was only modified 
ahead of 0,s of the chord whereas for shape B representing the R.A.E. 101 
section on wing B in para. 5.2, the changes extended back to 0.10~. It 
follows that the comparison when available between the calculated and 
measured results for this wing C should provide a much more sensitive test of 
whether one can retain the true section shape up to a point very close to the 
leading edge. There is of course another wa of looking at this: the 
limiting factor could be the value of (dz/dx x=o 5 that can be tolerated. 
The value for the modification used here for the R.A.E. 100 section is 
actually 3.9 as compared with 1.1 for shape B corresponding to R.A.E. 101. 
Hence, in the present case, the slope at the leading edge has been allowed 
to approach 70". 

The chordwise distributions of v' 
XP 

o calculated for this wing at 

MO 
= 1.2 are shown in Figure 10. Results have been obtained for the full 

extent of the chord aft of about 0.05~ for four stations including q = 0.1 
which corresponds to the side of the body. Additional values over the 
forward part of the chord were calculated for four extra stations to help in 

a/ 
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a detailed interpolation of the velocity distribution over the surface. As 
mentioned above, no comparison with experiment can yet be made but at first 
sight, the results of the calculations appear quite plausible. The values of 
V’ 

P 0 
obtained even as far forward as 0.05~ seem to be reasonable. Near 

mid-semispan, e.g., for n = 0.5, the results are similar in general shape to 
those that would be obtained for the R.A.E. 100 section in two-dimensional 
flow - in particular, the maximum supervelocity occurs in the region from 
0.1~ to 0.213 and this is in line with the results in two-dimensional flow 
where the maximum velocity occurs at 0.120. It is also worth mentioning 
that the velocities calculated for the body side are very close to those 
initially assumed by Newby when designing this wing-body combination. This 
seems to suggest that in the present case, the effects on the velocities due 
to thickness at the body-side due to the spanwise variation in thickness/chord 
ratio are relatively small. 

5.4 Tapered sweptback wing with spanwise variation in section shape 
wing D) 

As explained above, it proved possible with wing C to design a waisted 
body such that the isobar pattern over the wing surface should be reasonably 
satisfactory assuming that the calculations are giving a reliable indication 
of the flow that would actually occur in practice. In other words, the 
contributions from the waisted body and from the wing warp were sufficient to 
compensate for the changes with spanwise position in the velocities due to 
thickness (Figure 10). As can be seen, the maximum velocity due to thickness 
occurs at a position that varies from about 0.13~ for 77 = 0.6 to about 0.25~ 
for q= 0.3 to 0.65~ for the body-side at q = 0.1. It is clear that even 
in this case, the waisted body is being asked to provide quite a sizeable 
contribution and experience in trying to design other efficient sweptback 
wing-body combinations has shown that it is often difficult within the various 
practical limitations of an aircraft layout to accept the severely indented 
shapes that are actually required according to calculation. Indeed, one main 
reason why the problem did not prove too difficult with wing C was that the 
basic section shape chosen for the wing gave a "sheared-wing" velocity 
distribution with the maximum velocity occurring far forward. The tendency 
to obtain a severely indented body shape would be more acute for wings having 
sections giving a roof-top pressure distribution for the sheared wing with 
the roof top extending back to say, 0.4 or 0.5~. For the range of 
applications where it is difficult in practice to indent the body as required 
by calculation, it is important to consider whether the body requirements can 
be eased by also modifying the wing section shape near the root. It will be 
recalled that the combination of these two ideas has been suggest d 'n the 
past for wing-body combinations operating at high subsonic speeds 3,lb . It 
is not to be expected that modifying the wing sections can be thought of as a 
complete alternative to shaping the body; the hope is that using the two 
ideas together may result in the required body shapes being less extreme. 
There is therefore an obvious interest in seeing whether varying the wing 
section shape near the root will give similar results at supersonic speeds. 

Even for the planform, wing loading and basic section shape assumed for 
wing C, a case can still be made for suggesting that a forward movement of 
the maximum thickness near the root could be helpful. It would not 
necessarily reduce the amount of body waisting required but it would make it 
easier to choose a shape which was compatible with the requirements for the 
upper and lower surfaces. R.A.E. calculations suggested that a suitable 
velocity distribution due to thickness at the body-side might be that shown 
in Figure II where it is compared with the distribution calculated for the 
constant-section wing C. It will be seen that this "required" distribution 
is actually much nearer to the sort of distributions that were obtained for 
the outboard stations on wing C. The required distribution implies that the 
maximum thickness at the root should be at about 0.05 - 0.06~. The modified 
root section actually selected for the varying-section wing D has its 
maximum thickness at 0.13~ (Figure 12). This means that wing D'cannot be 

expected/ 
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expected to give the requjred body-side velocity distribution due to 
thickness shown in Figure Il. Nevertheless, the change from the basic 
R.A.E, 100 shape should be quite sufficient to demonstrate in principle 
what can be achieved by modifying the section shape near the root in this 
manner. 

The new root section shown in Figure 12 was obtained by modifying the 
polynomial for dz/dx so that a smooth variation along the chord was 
obtained with a maximum thickness position at 0.13~ and still retaining the 
same thickness/chord ratio as before. The values of dz/dx for the 
modified section and for the original R.A.E. 100 shape are compared in 
Figure 13. The values on these figures are for a thickness/chord ratio of 
0.10; for the calculations, the same values of t/c were used ~13 for the 
previous example - see Table III. The valuea of dz/dx for the modified 
section were expressed by the following relations: 

For 0 < x c 0.01, 

dz t/c 
- = - I8.47193 - 817.193x] 
dx 0.10 

For 0.01 S x < 0.05, 

dz t/c 
-= - IO.77024 - 72.3269x + 3077.50x?- 58860.1~ + 413630x4 1 
dx 0.10 

For 0.05 d x < 0.25, 

dz t/c 
-= - lo.19587 - 3.3292x + 21.5481+ 68.75623 83.93x4 ] 
dx 0.10 

nor 0.25 6 x < 0.65 

dz t/c 
- = - [a06971 - 0.73276x + 1.6812x1 - 2.0110xD + 1.001x4 1 
dx 0.10 

For 0.65 s x < 1.0 

dz t/c 
-= - - (0.06849) . . . . . . . . -0 (28) 
dx 0.10 

The original section shape was retained at and outboard of Y = 0.56: 
the station as shown in Figure 14 at which the forward Mach line fran the wing 
root trailing edge intersects the wing leading edge. To obtain the section 
at intermediate stations, the values of dz/dx for a thickness/chord ratio 
of loi& for the modified root and R.A.E. 100 shapes were interpolated linearly 
and then multiplied by the thickness/chord ratio of the original design (as 
discussed in section 5.3). To put this mathematically, one can refer to 
Figure 14 and say that 

E x:lxl,y, = c:x:x,.o+$.Ex :)x,,,-(: x:)xlol 

. . . . . . e.. (29) 

(As in other cases when determining dz/dx, x and X are non-dimensionalised 
in terms of the local chord,) 

To make thia quite clear, the linear interpolation was carried out assuming 
that the sections were lC$ thiok throughout; in fact, the thickness/chord 

ratio/ 



- 27 - 

ratio variation was as given in Table III and as a result, the spanwise 
variation in dz/dx on the surface of the wing was not linear. This was 
done so that the calculations could show the effect of a change in section 
shape whilst s,till retaining the same thickness/chord ratio variation as 
on the original wing. It should perhaps be pointed out that it would have 
been no more difficult to calculate the velocities for a wing with a linear 
or even a parabolic or higher order distribution of dz/dx itself and this 
might have been nearer to a practical design. The essential point here is 
that the interpolation to find the geometry of intermediate sections is 
most conveniently done in terms of da/dx rather than z. For the 
interpolation adopted in the present case, the values of dz/dx and z 
for a station midway between the root section and where the modification 
fades out are shown in Figures 12 and 13. 

The effect of' the modified wing sections on the velocity distributions 
at the body-side (n = 0.1) and at the intermediate station (n = 0.25) are 
shown in Figure 15. The important conclusion is that the changes in 
velocity produced by the changes in thickness shape near the root, are 
qualitatively similar to those that would have been produced at subsonic 
speeds. As regards the velocities at the body-side, the trend shown in 
Figure 15 is undoubtedly in the right direction. For example, if one had 
been merely trying to obtain a fully swept isobar pattern over this particular 
wing design at zero lift, the change from the body-side distribution due to 
thickness for wing C to that obtained for wing D would clearly have reduced 
the amount of body waisting required. Also, in the context of the R.A.E. 
design for lifting conditions, the distribution for wing D is closer to the 
required distribution shown in Figure 11. As noted earlier, to obtain 
agreement with the "required" distribution, the maximum thickness would 
have to have been moved even further forward to 0.05 - 0.06~ and also it 
seems that the thickness/chord ratio would have had to be increased further 
since the values of v1 x/v o over the major part of the chord are about 0.02 
higher for the required distribution than for the results obtained for wing D. 

For the intermediate section half-way between the root and where the 
modification fades out, the results for wing D are less satisfactory. The 
calculations suggest that relatively high velocities would occur far forward 
near the leading edge. From what has been said earlier, it is possible 
that the calculations are not fully reliable in this region but even so, 
the nature d.the results does not in itself imply that they are inaccurate. 
The section shape at this intermediate station (Figure 12) is clearly rather 
bluff and it is therefore not surprising that the calculations are predicting 
high velocities near the leading edge. Experience in designing wings for 
subsonic flow has shown that this is often one of the pitfalls in designing 
modified section shapes near the root. For example, in reference IO, it 
was found that to avoid a region of high suctions near the leading edge a 
little way out from the root, it was necessary to introduce an additional 
control station not very far from the root rather than allowing the 
modification to fade out gradually. Similarly, in the present case, the 
high supervelocities at q = 0.25 could no doubt have been avoided by the 
choice of a different interpolation procedure across the span for dz/dx. 

While it is true that the present example may not be entirely 
satisfactory either in the manner in which the geometry was specified or 
in the results obtained, it has been sufficient to demonstrate that there 
is undoubted scope for section modifications of this sort on sweptback 
wings being designed for supersonic Mach numbers. It remains to be seen 
whether the calculation methods as at present developed are good enough to 
cope with the designs needed in practice. 

It is perhaps worth reiterating what can be done with the existing 
programme. In the example just considered, the expression for (dz/dx>X Y 
that was used in evaluating the double integral can be written in the fo& 
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(E,,, = ~AmY"[~anX"+(Bo+B,Y) f bnXn] . 

9 1 1 I 

. . . . . . . . . (30) 

It would be relatively simple to extend this to 

dZ 
- ( > 
ax X,Y 

= 

n 
r” 

n' 

pP”] 
1 

c . . . . . . . . (3Oa) 

or more simply 

(z,, y = F an X" f Bm Ym r bnX" 

9 1 I 1 

. . . . . . . . . (3Ob) 

or to add extra terms of a similar character. 
considered, the equation for (d~/dx)~ y 

Also, as in the example just 
need not remain the same throughout 

the span; different equations could &. used inboard and outboard of several 
"control stations". The coefficients (an9 b,,Am . . . . ) in equations (30) 
are assumed to be purely numerical4 they are not functions of either X or 
Y. It is quite likely that for a varying section wing in practice, the wing 
would be designed on the principle of straight generators between two control 
stations and that therefore the interpolation would be a function of z 
rather than dz/dx. This could mean that strictly to represent such a wing 
by equations of the above form, the coefficients (Am9 Bm . . . . ) would have to 
be functions of X. This would somewhat add to the complication, it would 
not just be a case of writing another sub-routine for the computer programme 
because it would have changed the nature of the integrals I2 that were 

. . . 
solved in section 3. The hope therefore is that relations of tze form (308) 
or (job) can be used for any practical example. This is a reasonable hope 
since one can always for the purposes of the calculation, introduce a 
relatively large number of "control stations". By this device, it should 
be possible to approximate to the true wing geometry between say, Y, and Y2 
quite closely. An-increase in the number of control stations does not 
alter the mathematics or the validity of the integrations; it merely adds 
to the time required on the computer. 

To avoid confusion abat this question of the required number of 
"control stations", it should be stressed that in talking about the 
possibility of a large number, one is merely referring to what might have 
to be done in certain cases to compute the velocity distribution. It does 
not follow that one would need a lot of control stations for the actual wing 
to give a good aerodynamic performance. The number required in practice 
would obviously vary from one application to another and would depend on a 
proper balance between aerodynamic design and structural requirements. In 
general, it seems that 2 or 3 on a wing may not be sufficient and that the 
ideal number may be 4 or 5. 

6. CONCLUDING RFMARKS 

This note has described a method for calculating the velocities due to 
thickness at supersonic speeds for sweptback wings with subsonic leading 
and trailing edges and with a finite leading-edge radius. The method is 
designed to cope with wings of arbitrary planform and with an arbitrary 
distribution of wing thickness form across the span. The wing leading-edge 
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and trailing-edge shape, the spanwise distribution of thickness/chord ratio, 
the chordwise distribution of dz/dx and the fairing between the values of 
dz/dx at different stations across the span all have to be expressed in 
polynomial form. Suitable expressions for 
wing are given in relations (30). 

dz/dx on a varying section 
These various polynomials need not apply 

over the whole span; appropriate relations can be used to define the wing 
geometry between different "control stations"; an increase in the number 
of stations merely means that extra time is required on the computer. If 
these stations are also control stations in the design of the wing, genuine 
"kinks" in the geometry of the wing design could exist at these points but 
if not, experience has shown that it is important not to introduce any 
further artificial "kinks" when determining the polynomials to specify the 
geometry for these calculations. In cases where the true wing design is 
continuous across a control station, it is important to preserve this 
continuity between the polynomials applying inboard and outboard of the 
station - continuity not merely in the parameter in question but also in its 
first and even its second derivative. This is particularly so in the case 
of the wing leading-edge equations. 

The method has been programmed for the Zebra computer and calculations 
have been made for four different wing designs. For a simple untapered, 
constant-section wing, good agreement was obtained with the results of 
desk-machine calculations using analytical expressions. For a tapered, 
constant-section wing, a comparison was possible with experimental results 
from tests in the 8 ft x 6 ft transonic tunnel at R.A.E. Farnborough. 
While the agreement between the measured and calculated results is not 
perfect, there is a general similarity in the shape of the measured and 
calculated velocity distributions and in their variation with spanwise 
position. Any differences that exist are not necessarily due to 
deficiencies in the theoretical approach but may be partly due to viscous 
effects in the experimental results. 

The two main drawbacks to the rsthod as presented are that strictly, 
it can only cope. with sharp-nosed sections and that the times required on 
the Zebra computer are very long. This last point is obviously important 
since if the method is to be used in helping to design a wing to satisfy a 
certain prescribed pressure distribution, calculations have to be made for 
a range of wing geometries and an iterative approach adopted. The time on 
Zebra could be reduced by writing a programme in normal code rather than 
simple code; also, the outline of the computer programme included in 
Appendix I should help in transferring the programme to a faster computer 
if required. Before contemplating either of' these steps, however, it would 
be preferable to see whether the method could be recast so that one of the 
integrations could be performed analytically leaving only a single 
integration to be solved numerically. If this were possible, an enormous 
saving in time would result. 

The fact that the method strictly is confined to wings with sharp-nosed 
sections mans that when obtaining results for comparison with experimental 
data for a wing with a round-nosed section, the true section shape has to be 
modified close to the leading edge. Experience to date suggests that a 
very small modification may suffice, e.g., for one af the examples discussed 
in the present note, the modification only extended over 0.005~ and the slope 
at the leading edge was allowed to approach 70'. It appears that this 
probably gave satisfactory results.for points aft of 0.050 and it is possible 
that it was satisfactory even ahead of this. Hence the present method may 
not be as restrictive as appears at first sight. Even so, the current 
trends in wing section design are emphasising the need for methods which 
give accurate results for the velocities very close to the leading edge. 
In the long term, therefore, the mathod should be recast to cope with 
round-nosed sections. This should be perfectly possible since although 
the integrand in equation (2) then becomes infinite at the leading edge, the 
integral still remains bounded for typical aerofoil shapes (since these are 
closely elliptical and the singularity is then of order l/\/x). 

Quite/ 



- 30 - 

Quite apart from the question of the singularity at a round leading 
edge, it must be realised that the method can be no more accurate than are 
the assumptions of linearised theory. 
wings at high subsonic speeds, 

Vhen analysing results for sweptback 
it has been found that the simple 

Prandtl-Glauekt transformation, i.e., the linearised transformation, is not 
good enough and second order expressions have had to be derived. Similar 
conclusions could well apply at supersonic speeds. Another illustration of 
where the assumptions of linearised theory could give rise to significant 
errors is that for these calculations, the zone of influence affecting the 
potential and velocity at a given point is defined by the area ahead of the 
forward Mach-lines related to the Mach number of the freestream whereas in 
practice, it should be the Mach number & the local stream. Other sources 
of inaccuracy may exist close to the wing leading edge (even if it is sharp), 
e.g., the assumption that the source strength is proportional to the local 
(az/ax), the relations (8) for translating the velocities in the chordal 
plane into velocities over the surface and finally, the choice of an 
appropriate area isolating the singularity round the point for which the 
potential is being calculated. These are however all points af detqil and 
should not be overstressed. 

It is clear that the general trends indicated by results using the 
present method should be reliable. In particular, the method is valuable 
in that it gives the velocities due to thickness for a wing of complex 
geometry with, for example, the section shape varying across the span. 
The calcule,tions already made for such a wing (D) lead to the impartant 
conclusion that changes in velocity produced by changes in shape near the 
root are similar qualitatively at supersonic speeds to those that would 
occur at subsonic speeds. In certain applications, modifying the wing 
section shape near the root might reduce the amount of body waisting required 
to give a satisfactory isovar pattern. More generally, allowing the section 
shape to vary near the root should give a greater freedom in devising a design 
that is both efficient aerodynamically and yet satisfies the restrictions of a 
practical layout. In particular, it should help in designing a body shape 
that is compatible with the requirements for the flow over both the upper and 
loarer wing surface under the design conditions. As with subsonic 
applicatiDnr in the past, the maximum thickness would have to be far forward 
at the wink rook and the spanwise change in shape near the root would have 
to be relatively rapid. Experimental results for such a wing that could be 
compared with calculations using the present method would be of great interest. 

LIST/ 
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LIST OF SYMBOLS 

oentre-line chord of a wing-body configuration C 
C 

C 
0 

F(W) 

MO 

Q 

8 

% 

vO 

v ¶V 
x Y 

v: 

X,Y,Z) 
X,Y,Z) 

xa,\sxu etc. 

X 
0 

be 

"I 

root chord of a wing-body configuration, taken as the 
basic centre-line chord of a nett wing for present 
calculations and used to non-dimensionalise the wing 
plan geometry 

function defined in equation 2(b) 

freestream Mach number 

source strength 

semispan 

thickness/chord ratio 

freestream velooity 

supervelocity components (in chordal plane) 

supervelocity component at point on surface 

rectangular coordinate system with x measured in the 
freestream direction, y spanwise and z normal to 
the chordal plane. The origin of the axes is at the 
leading edge of the centre section. In general, x,y,z 
are non-dimensionalized with respect to the root or 
effective centre-line chord, cc. 

N.B. In determining dz/dx, x is taken from the local 
leading edge and both x and z are non-dimensionalized 
with respect to the local chord c. 

appropriate limits of integration for equation8 in 
section 3 

coordinate of the nearest point to the leading edge at 
which the velocities can be calculated for given values 
of 6 and E (see equation 15) 

small quantities as defined in Figures 1 and 2. Typical 
values of 6 and E that have been used for the 
present oalculations are 6 = e = 0.001 

AP - 1 
0 

the ratio of y/semispan of corresponding gross arrowhead 
wing 

parameter in the relation (22) for defining the chord 
of a tapered wing 

potential or angle of sweep 

leading-edge sweep 

trailing-edge sweep 

values of 4 obtained from either Weddell or Hardy 
quadrature formulae 
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0 area of integration, divided into c,, C2 . . . C5 as 
shown in Figure 1 

If defined by the relation tan Jr = v 
s/ 

vx 

(for an infinite sheared wing, d( = 4) 
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,AppENDIX I 

,Computer Flow Diagram for Constant Section Wiq 

A: y = 0 Case. 

Read data and set up required intervals of x and y 

b 
Evaluate M,p, and other constant 
functions used in the integrals 

xi+iflimit 

~26. M-line and 

Q 

Evaluate I - 4. 
1 

L!A Q30 

I STOP 

(N.B. Q subroutines listed after diagram B) 
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Computer Flow Diagram for Constant S.zct,tin Wing 

B: y # 0 Case 

Entry .iRead data and set up required intervals of x and y 1 

I Evaluate M,p, and other constant 
functions used in the integrals 3 

(See Flow A) 4 y=o 
I 

Examine M-line 

,$j &I L-w 

I test. Evaluate 
I2 and I 3' or 

Q40 M-line and T.E. - 

1 '23 , & Q42 M-line and T.E. + 

b 
Calculate I5 jiii-~Y~ 

; HGG--1 Calculate CI 

(N.B. Q subroutines listed below) 



- 5/ - 

LIST OF Q SUBROUTINES USED IN CX)MFVlXR PROGRAMME 

1. Fl3EDSURROUTINES 

Qd 

Q5 

QIO 

Ql6 

Q30 

I dY 

I 
ax 

(3 cOsh-l Cl + @ I,” Y, 3 

aZ 

( > 
\ 

- 

ax X,Y 

x-x I= P (Y - y>” 

x-ply-yJ-s 

OR: fTIYl - x - p 1~ - yI - 6 

2. SUBROUTINES DEPENDENT ON WING GEOMETRY 

820 (Uses Q22 and Q24) 

Q22 f,(Y) 

424 fT(Y) = IYI tan % + 1 

Q26 Intersection of M line and L.E. + 

Q37 n )I 1t 11 ' L.E. - 

Q40 
11 ?1 11 V? ' T.E. - 

842 It 0 11 (1 " T.E. + 

I/ TABI;E 
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TABLE I 

SECTION SHAPES USED FOR CALCULATIONS FOR WINGS A,B 

X 

z 

0 0.4771 
0.005 0.4571 
0.010 0.4382 
0.050 0.3107 
0.100 0.2016 
0.150 0.1304 
0.200 0.0807 
0.250 0. ab33 
0.300 0.0080 

dz dZ dz 
dx dx G 

S?LAPEA R.A.E.lO1 SHAPEB 

0. a& 
0.6941 
0.2447 
0.14fB 
0.1000 
0.0656 
0.0367 
0.0063 

I 1.84-88 
1.2265 
0.6~41 
0.2438 
0.1483 
0.1000 
0.0658 
0.0362 
0.0068 

All the above figures correspond to a thickness/chord 
ratio of 0.10. 

TABLE II 

COORDINATES OF TIP LEADINGEDGE SHAPE FOR WING B (Fig.5) 

*L 

0.5417 0.9104 
0.6223 1.0540 
0.6702 1 .I495 
0.7180 1.2591 
0.7659 1.3934 
0.7898 1 A-834 
0.8138 1.6829 

xL 

TABLE III 

GEOMETRY OF VARYING t/c WING C 
Planform given by C = ccp(lq) 

0 
0.1000 
0.1500 
0.2000 
0.2500 
0.3000 
0.3500 
0.4000 
0.4500 
0.5000 
0.5500 
0.6000 
0.6500 
0.6750 
0.6875 
0.7OOO 
0.707107 

t/c 
0.0528 
0.0489 
0.0468 
o.ow 
0.0428 
0. a-w 
0.0389 
0.0371 
o. 0357 
o. 0345 
0.0339 
0.0355 
o.wJ5 
0.0469 
0.0537 
0.0622 

P 

1.0000 

0.9996 

0.9974 

0.9901 

0.9684 
0.9444 
0.8999 
0.8064 
0.7103 
0.6280 
0.4-734 

0 
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CT= 6; + 6* + 63 + 64 ‘+ 65 

(IF C AHEAD OF 6, 6= 6, +43+d4 +ds ) 

FIG.1. FIELD OF INTEGRATION (6) FOR DETERMINING 
POTENTIAL AT P (x, y> 

WE 5 31 

AREA t& CAN NOT EXTEND AHEAD OF LEADING EDGE THEREKIRE 

t#~ CANNOT BE OBTAINED FOR POINTS AHEAD OF (=.,Y) 

FIG.2. ILLUSTRATION OF HOW NEED TO DEI”ERM1NE 
POTENTIAL FOR POINTS NEAR LE. CAN 
DICTATE- CHOICE OF E A 



-10.0 

dz 
dr 

-9-o 

- 8.0. 

- 7.0 

-6.0 

- 4.0 

-3.0 

-2*o- 

-1-O. 

t 

RAE. 101 - 
SHAPEA - - - (USED H)R WING A, B) 
SHAPEB -.-.-.(USED FOR WING B) 

-I- 

i 0.006 O* 
YL 
08 x: 0.010 

FIG 3(a) SLOPES OF SECTIONS USED FOR 
CALCULATIONS FOR WINGS A AND B 
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SLOPES OF SECTIONS USED FOR 
CALCUL~IONS FOR WINGS A AND B 
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2 FIG. 4. 

‘z Jk + By ANALYTICAL SOLUTION (R.A.E. UNPUBLJSHED 
CALCULATIONS) - m., -‘SENT METHOD 
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IO+i36. 

WING SECTION R.A,E.lOl , 6% THICK. 

NUMBERS INDICATE DIMENSIONS 
IN TERMS OF WING CHORD AT 
BODY SIDE (ASSUMED TO BE 
THE WING CENTRE PLANE 
FOR PRESENT CALCULATIONS 1. 

o-5417 

1 FIG.5. 

l-3320 , 

FIG. 5. PLAN GEOMETRY OF TAPERED WING B. 
(SEE 5 5-2) 
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= 0.323 

- -0.05 ---- . SHAPE A .- 
- SHAPE B 

FlG.6. SUPERVELOCfTY DlSTRlBUTKXI(S FOR 
TAPERED WING B 

EFFECT OF DIFFERENT SECTION SHAPES. 
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FIG. 7 COMPARISON OF VELOCITY DISTRIBUTIONS 
IN TWO DIMENSIONAL FLOW AT M= 0 

0 0 , 0 x 1 

\ 

; FE ; CALCULATED By EQUATION BELCW 

R,A.E. 101 SECTlON SHAPE. 

‘IG. 7 
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FIG. 8. 

X 
l( 

7pO.431 (SEE flG.5) 

I 

0 

,FIG. 8. SUPERVELOCITY DISTRIBUTIONS FOR 
TAPERED WING B. 

COMFfARlSOb4 OF CALCULATED AND MEA%J?ED VALUES. 



j FIG. 9 

01245 

\ v-- 60’ 

CHORD C GIVEN BY EQNS. (23,24 1 
WING SECTIONS: R.A.E. 100 

(‘k AS IN EQNS. (25) 1 

WING LEADlNG EDGE. 

BASIC ARRCMlHEAD WING. 

0.6071 x S 

O-7558 

NUMBERS INDlCATE DlMENSlONS IN TERMS OF 
WING CHORD AT BODY SIDE (ASSUMED TO 
THE WING CENTRE PLANE FCX? PRESENT 
CALCULATIONS1 

FIG.9. PLAN GEOMETRY OF WING C WITH 
VARYING t/c ACROSS SPAN. 

(SEE 5 5.3 ) 
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- A DISTRIBUTION DUE TO THICKNESS FOR CU6lAN’MECTlON WING C. 

B DESIRABLE DISTRlBUTlON DUE TO THICKNESS FOR WAReED WIN G 
UNDER LIFTING CONDITIONS. 
ir. TARGET FOR A VARYING-SECTION DESM. (SEE 9 5.4) 

FIG. 11. BODY-3 DE DISTRIBUTION DUE TO THICKNESS Ma= 1.20. 
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FIG.12 SECTION SHAPES FOR VARYING SECTION WING D 



Y MOOtFlED ROOT SECTlON (“l= O-1 ) 

+ INTERMEDIATE SECTION (7.0.25) 

o SECTION OUTBOARD OF (7 = O-4 I( R.AE. 100 1 
dr 

N.B. THESE ARE VALUES Off’ dr FOR tlC-O.l 

SECTIONS OF ACTUAL WING HAK: t/c AS 
SPECIFIED BY EQUATIONS (24) DR TABLE III. 

FIG. 13. SURFACE SLOPES OF VARYING SECTION 

WING R 
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- 

x,x 

\ 
(y,o) 

_ Y 

FORWARD MACH 

Y DEFINED AS USUAL (FIG 1) 

x,X=0 AT LOCAL WING LEADING EDGE. 

X,X ,% NON-DIMENSIONALIZED IN TERMS OF LOCAL CHORD. 

FIG. 14. METHOD ADOPTED FOR INTERPOLATING 
WING SECTlON SHAPES ON WING D. 
(PLANFORM AND tc DISTRIBUTION AS FOR C) 
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It is likely however that for round-nosed section, if' the 
truz section is replaced by an equivalent sharp-nosed 
set tion, reliable results may still be obtaizled, at least 
aft of about O.&o. 1 

Calculations have been made for the velocities due to 
thickness at !k! = 1.2 over four different wings. These 
are respectively, untapered, tapered in plan, tapered 
both in plan and thickness/chord ratio and fina3.Q 
tapered with a spanwise variation in section shape. In 
one case, a comparison with experimental results is given. 

It is likely however that for round-nosed sections, if the 
true section is replaced by an equivalent sharp-nosed 
section, reliable results may still be obtained, at least 
aft of about 0.04-c. 

Calculations have been made for the velocities due to 
thickness atb! = 1.2 over four different wings. These 
are respectively, untapered, tapered in plan, tapered 
both in plan and thickness chord ratio and finally, 
tapered with a spanwise variation in section shape. In 
one case, a comparison with experimental results is &ven. 

It is Likely however that for round-nosed sections, if the 
true section is replacedby an equivalent sharp-nosed 
section, reliable results may still be obtained, at least 
aft of about o.QJ+c. 

Calculations have been made for the velocities due 
to thickness at M = 1.2 over four different wings. These 
are respectively, untapered, tapered in plan, tapered 
both in plan and thickness/chord ratio and finally 
tapered with a spsnwise variation in section shape. In 
one case, a comparison with experimental results is given. 

-------------------------------------~--------------------------------------------------------------------- ---_ 
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